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ABSTRACT 

 

‘Expectation-based, Multi-focal, Saccadic’ (EMS) vision 
has been developed over the last six years based on the 4-
D approach to dynamic vision. It is conceived around a 
‘Multi-focal, active / reactive Vehicle Eye’ (MarVEye) 
with active gaze control for a set of three to four 
conventional TV-cameras mounted fix relative to each 
other on a pointing platform. This arrangement allows 
both a wide simultaneous field of view (> ~ 100°) with a 
central region of overlap for stereo interpretation and high 
resolution in a central ‘foveal’ field of view from one or 
two tele-cameras. Perceptual and behavioral capabilities 
are now explicitly represented in the system for improved 
flexibility and growth potential. EMS-vision has been 
implemented in two test vehicles VaMoRs and VaMP on 
sets of three to four dual-processor PC plus 
microprocessors for hard real-time data processing. Test 
results on autonomous mission performance on- and off-
road have been demonstrated.  

 

1. INTRODUCTION 
 

The basic difference between stationary vision systems 
and those on-board a vehicle is the fact that in the latter 
case the cameras do not only move tangential to the 
trajectory driven but are also subjected to (rotational and 
translational) perturbations. These may stem from non-
smooth surfaces, from aerodynamic forces or from using 
the control devices (throttle, brakes and steering in case of 
road vehicles). Fast rotational motion will lead to motion 
blur in the image, especially under poor lighting 
conditions like dawn and dusk because of the extended 
integration time needed for accumulating light intensity. 
The same rotational rate will be the more detrimental to 
image processing the larger the focal length of the camera. 

For perceiving the environment from aboard a vehicle 
properly, three tasks have to be solved in vision: 1. Is 
there something of interest in the hemisphere into which 
the vehicle is moving? (later on referred to as VT1) 2. 
What is it that attracted attention by the previous process; 

where is it relative to me and how does it move? (VT2) 3. 
What is the likely future motion and (for subjects) 
intention of the object/subject tracked? (VT3). These 
vision tasks have to be solved by different methods and on 
different time scales in order to be efficient. Also the 
fields of view required for answering the first two 
questions are quite different. Question 3 may be answered 
more efficiently by building on the results of many 
specific processes answering question 2, than by resorting 
to image data directly. 

Vision systems for a wider spectrum of tasks in 
ground vehicle guidance have been addresses by a few 
groups only. The Robotics Institute of Carnegie Mellon 
University (CMU) [1-6] and DaimlerChrysler Research in 
Stuttgart/Ulm [7-12] (together with several university 
groups) are the most active ones. A survey on research 
activities in vision for ground vehicles is given in [13, 
14]; the latter one of these shows in table 2 the number of 
institutions working on specific tasks in road vehicle 
guidance by machine vision, grouped according to the 
most active countries. At least about 50 groups worldwide 
are or have been active in this field. A good survey may 
be obtained from looking at the proceedings of the yearly 
International Symposium on ‘Intelligent Vehicles’xx’ 
[15]. To the best of our knowledge, none of these groups 
has developed and demonstrated an integrated approach 
similar to EMS-vision [16-23]. A good example of 
conceptual work in a similar direction is [24]; however, 
there are fundamental differences in the approach.  

The parameters for the design of EMS-vision have 
been derived from road traffic scenarios and typical tasks 
to be solved during a complex mission on a network of 
roads from minor dirt roads to freeways (German 
Autobahn).  

Assuming limited speed of other objects/subjects in 
the environment, it is immediately clear that for avoiding 
collisions, only the near environment is of special interest. 
However, it is almost the full hemisphere, from which for 
example other subjects in ‘Stop & Go’-traffic may move 
into the trajectory planned for ego-motion.  

Driving oneself at high speed (say 40 m/s = 144 km/h 
= 90 mph) the distance for stopping the vehicle may be 
considerable; with one second reaction time and –5 m/s² 
deceleration (~ half of Earth gravity acceleration) a 
stopping distance of ~200 m will result. Since objects of 
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dimension 0.1 m in their smaller direction of extension 
may be harmful to vehicles, this size should be covered by 
2 to 3 pixels for reliable detection. This yields an angle of 
about 0.16 milli-radian per pixel (mrad/pel) or an image 
size of about 7° according to CCIR standards (~ 760 
pel/line). The requirements resulting for a ‘vehicle eye’ 
from these considerations are discussed in section 2. 

It will turn out that for reasons of data economy, 
foveal-peripheral differentiation in the field of view 
(f.o.v.) and active gaze control will be advantageous, as 
has been found out by ‘Nature’ when developing the 
vertebrate eye over millions of years in evolution. Once a 
separate unit for imaging with gaze direction control is 
available (the eye), small relative to the body size, 
coupling with inertial sensing for rotational ego-motion 
may lead to inertial gaze stabilization, which considerably 
alleviates image processing onboard vehicles. - Feedback 
of deviations in position between the desired and the 
actual center of visual features, observed in image 
processing, allows smooth pursuit (fixation). In addition, 
gaze control increases visual search range (overall f.o.v.). 

This rather complex type of visual sensing is way too 
expensive for solving a single task. However, with proper 
gaze control and background knowledge, many different 
tasks are solvable just by switching mode and by resorting 
to specific knowledge bases geared to the problem domain 
at hand. Our human vision system demonstrates the wide 
range of applications possible once sufficient computing 
power, communication bandwidth and storage capacity 
are available. The EMS vision system developed has been 
conceived as a starting point for technical vision systems 
with growth potential for general applications according 
to the availability of computational resources. As a 
guideline, long-term technical capabilities for vehicle 
guidance may develop similar to the growth process of a 
human individual from early childhood to grown-up 
proficiency after special training, for example as a test 
pilot.  

The structure of the cognitive vision and motion 
control system developed is supposed to be rather general, 
and stable in the meantime. Considerable effort still has to 
go into knowledge representation for feature extraction, 
hypothesis generation, situation assessment and behavior 
decision in different domains as well as for learning and 
cooperative behavior. Explicit representation of 
perceptual and behavioral capabilities has recently been 
introduced into the system for improving flexibility in 
mission performance and more easy adaptation to new 
developments.  

After section 2 with the requirements leading to 
‘MarVEye’ for road vehicle guidance, integrated 
inertial/visual perception will be briefly discussed in 
section 3. Section 4 gives some answers to problem area 
VT3 for visual perception as discussed above; this topic is 

solved exploiting the object-oriented symbolic 
representations in the Dynamic Object dataBase (DOB) 
by the ‘scene tree’, relying on both Homogeneous 
Coordinate Transformations (HCT) and spatio-temporal 
models including stereotypical behavioral capabilities for 
subjects. Section 5 gives a brief survey on behavior 
decision and its two-level implementation. One hardware 
realization of the system is discussed in section 6, and 
section 7 presents some experimental results for turning 
off onto a crossroad in a network of minor roads without 
lane markings.  

 
2. REQUIREMENTS FOR A TECHNICAL VISION 

SYSTEM 
 
Since in road vehicle guidance human visual performance 
is the standard for comparison, the technical vision system 
has to be scaled according to this standard. Humans are 
able to simultaneously observe a f.o.v. ranging over more 
than 180° horizontally. The foveal high-resolution part of 
the human eye is approximately elliptical with ~ 2° 
horizontally and ~ 1° vertically at the center of the overall 
f.o.v. The eye can be turned in a very fast manner (up to 
several hundred °/s) by so-called saccades. An internal 
representation of large objects may even be obtained by 
‘saccading’ and piecing together the details of the object 
over space and time. This can be done both along body 
contours and by saccading back and forth between feature 
sets, which cannot be mapped simultaneously. The 
framework necessary for achieving this type of 
performance is spatio-temporal modeling and keeping 
track over the own perceptual activities. 

 
2.1. Fields of view and resolution 
 
In road vehicle guidance on an advanced level it should be 
possible to look to the side (of intended motion) and to the 
front (actual motion) simultaneously. From this a required 
f.o.v. > ~ 100° is derived. Depending on the situation, this 
f.o.v. has to be gaze controllable to both sides. For driving 
on networks of minor roads with such a system, a yaw 
(pan) range required for the eye of about ± 70° results. 
This depends on the look-ahead range requested for the 
tele-camera looking into the crossroad shortly before the 
turn-off maneuver begins. It has turned out in long-
distance driving experiments on German high-speed roads 
that for perceiving passing vehicles cutting into your lane 
directly in front of the own vehicle (normally not allowed, 
but happening rather frequently) it is advantageous to 
have binocular stereo vision capability available at short 
ranges (< ~ 10 m). At larger ranges, monocular distance 
estimation exploiting motion stereo in the 4-D approach 
has proven sufficient [25, 26]. Also for tight maneuvering 
in connection with parking and in ‘stop & go’-traffic,    
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a) Fields of view and viewing ranges of  MarVEye b) Realization with 3 CCD cameras on two axis platform 
Fig. 1: MarVEye system parameters (a), camera set in VaMoRs on yaw and pitch platform, large stereo base but no strong 
tele-camera (b). 

 

 

stereo vision has its merits. For this reason, the camera 
configuration as given in figure 1a has been selected. 

The wide f.o.v. is achieved by two cameras with their 
optical axes in a common plane, but under diverging 
angles with a region of central overlap (about 10° - 15°). 
In this vertical stripe, also the f.o.v. of the mild tele-
camera is positioned. Vertical gaze can be controlled by 
pitch (tilt) of the platform head in a range of about –20° to 
+ 30°. A ratio of 3 to 4 in focal length has proven 
favorable for easy recognition of objects in both images. 
For covering the range of focal lengths of 10 to 15 
requested in traffic situations as discussed above, two 
tele-cameras with different tele-lenses are required. 

Fig. 3: MarVEye6 for cars with pitch control through a 
mirror.  

 
In the latest develop-ment step, the whole platform is 

moved only in yaw direction. As a compromise between 
mechanical and optical properties, all cameras are 
mounted fix on the yaw platform; the tele-camera is with 
its optical axis in the yaw axis. Vertical gaze control is 
done (for this camera only) by a mirror reflecting the 
horizontal view into the optical axis of the vertical camera 
(Figure 3); due to a low moment of inertia, high 
bandwidth in pitch can be achieved. The stereo-base has 
been reduced to about 15 cm and space needed for the 
imaging devices is small so that the system fits into the 
center of the windshield of a car without obscuring the 
driver’s view. 

 
2.2. MarVeye 
 
In figure 1a this concept is shown with a high-sensitivity 
black-and-white camera carrying the strong tele-lens; this 
has been chosen for achieving complementary properties 
with respect to lighting conditions. Most experiments 
have been performed with the three-camera system shown 
figure 1b (right part of fig.1). The results given in section 
7 have been obtained with this system in the 5-ton van 
VaMoRs. 

 
2.3. Active gaze control 
 
This capability is essentially a means for data economy. 
Since high resolution is required in areas of special 
interest in the real 3-D world only, the f.o.v. needed for 
imaging decreases with increasing distance. A three-lane 
driveway has a lateral extent of about 15 m. At 200 m 
distance, this corresponds to an angular f.o.v. of 4.3°. 
Allowing a factor of three for inaccurate pointing and 
other perturbations on the vehicle body, a f.o.v. of ~ 13° is 
appropriate. With ~760 pel/line according to CCIR 
standard, a spatial resolution of about 0.3 mrad/pel results 
(which corresponds to ~6 cm per pixel at 200 m distance).  

 

 
Fig. 2: MarVEye5 with central motor-zoom camera, focal 
length from 4.1 to ~ 73 mm. 

 
An advanced version is a system with a compact 

motor-zoom camera as shown in figure 2 (with an optical 
zoom range of 1:18). It has a large stereo base of about 30 
cm, but is rather bulky.  

With a radius of curvature of 200 m (lower limit for 
high-speed roads in mountainous terrain in Europe), this 
f.o.v. has to be shifted in pan (yaw angle) by plus or 
minus 30° from the road tangent direction in order to have 
the driveway mapped into it. This means that without 
active gaze control, the high-resolution f.o.v. has to be 
about 60° (~ 5 times the value with gaze control). Taking 
the effects of vertical curvature of the road surface by the 
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same factor into account results in a factor of ~ 25 for 
image data to be handled without gaze control as 
compared to the case with this feature. The price to be 
paid for this 25-fold data rate reduction is a delay time 
resulting from a 60°-saccade, which is in the order of 
magnitude of a few tenths of a second.  

Requesting the same high resolution over a 100° x 
45° f.o.v. (the simultaneous f.o.v. of MarVEye without 
gaze control) would increase the data rate by a factor of 
more than 40. For covering the total f.o.v. of ‘MarVeye’ 
with gaze control by sets of cameras mounted directly 
onto the vehicle body, an increase in data rate by about 
two orders of magnitude would result. In absolute terms 
this would mean several Gigabyte/s data rate, which is not 
realizable in a vehicle at present. 

Beside data economy, the effects of inertial view 
stabilization and of smooth pursuit of a moving object 
with corresponding reduction of motion blur should not be 
underestimated. In summary, high performance machine 
vision should be active if it is expected to develop to a 
state somewhere near the capabilities of human vision. 

 

3. VISUAL / INERTIAL PERCEPTION 
 
Due to the high data rates, vision takes time before objects 
in the real world and their relative states are recognized. 
Starting a new hypothesis in visual recursive estimation 
typically requires about ten to twenty cycles (i.e. 0.4 to 
0.8 seconds) before the transients have faded away. If 
especially in the initial phase uncertainties from angular 
ego-motion are superimposed (without knowing them!), 
recognition will be very poor. Inertial sensors are able to 
provide good information on ego-motion including the 
effects of perturbations. From these data, just by 
exploiting the integral relationships between 
accelerations, velocities and positions from general 
dynamical models for 3-D motion, the short-term state of 
the own body can be reliably determined. Low-frequency 
drift problems occurring with inertial integration have to 
be handled separately; for these purposes, the effects of 
time delays in visual interpretation are negligible. 
Therefore, inertial and visual data processing has to be 
done in an integrated way (like in vestibular-ocular 
interaction in vertebrate systems). 
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Fig. 4: Coarse resolution flowchart of an overall architecture for visual / inertial perception and intelligent control of an 
autonomous vehicle 
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 3.1. Inertial sensing and data processing 
 
This technology is well known from strap-down 
navigation and not detailed here. Both sets of orthonormal 
accelerometers (mounted close to the vehicle center of 
gravity) and of orthonormal rate sensors are being used. 
For inertial pitch stabilization of the viewing direction, a 
separate rate sensor is mounted on the yaw platform for 
gaze control. This takes care of the fact that pitching for 
gaze depends on the yaw angle of the platform relative to 
the vehicle body. [As an idealized example: for a yaw 
angle in gaze of -90° (to the left), vehicle roll would be a 
pitch angle in gaze and vehicle pitch would be a negative 
roll angle in gaze (which cannot be counter-acted).]  

The data volume in inertial sensing is rather small. 
Therefore, gaze stabilization can be done at 500 Hz using 
a simple microprocessor, and ego-state estimation is done 
at 100 Hz (lower left in figure 4). Delay times are much 
smaller than for vision. Therefore, good estimates for own 
body angular pose (including the effects of perturbations) 
are available before higher-level interpretation of visual 
features starts. 

For counteracting inertial drift problems, visual 
features from stationary objects sufficiently far away can 
be used. Due to fuel consumption over time, bias values 
for vehicle pitch cannot be assumed to be constant, in 
general [27]; they have to be part of the dynamical model 
for achieving good results. Signals from inclinometers, 
corrected for body accelerations have also been checked, 
but discarded. 

 
3.2. Visual Perception 
 
EMS-vision is the third-generation development step in 
dynamic vision [28] based on the object-oriented 
programming paradigm in C++. The layering according to 
VT1 to VT3, mentioned in the introduction, has been 
newly introduced as a concept. For practical reasons in a 
university environment and due to missing 
communication bandwidth for a separate ‘visual feature 
database’, VT1 and VT2 are handled in the same program 
module, but grouped together according to object classes. 
‘Roads’ and ‘Vehicles’ are the two classes having 
received most of the development efforts [17, 18]. 
Landmarks for navigation have found some attention [29].  

In the long run, it may be advantageous to have 
special processors for 2-D feature extraction (and thus 
concentrate on task VT1). The problem when looking 
almost parallel to a planar surface is that each image line 
corresponds to a different distance, and feature 
interpretation for physical objects has to be scaled 
according to distance. However, this is not uniformly true, 
since near objects of large vertical extension obscure the 
more distant ones. For such an object, all image parts 

covering it have approximately the same distance, 
irrespective of the image line. Thus, a near object may be 
seen directly beside a far one; their features and temporal 
changes have to be interpreted quite differently. This 
requires an object-oriented approach in a spatio-temporal 
framework. A zoom lens may help adjusting optimal 
image size to distance, so that an object further away may 
be seen with the same resolution as another object nearby 
in the wide-angle image. 

 
3.2.1. Bottom-up object detection 
 

Groups of horizontal and vertical edge features have 
proven to be good and stable indicators for objects. In 
most cases, the dark area underneath a vehicle also is a 
stable feature for object detection; exceptions are tanker 
trucks in combination with a low standing Sun. However, 
in a single image it is sometimes hard to make the 
decision which features belong to an object. Tracking 
features over time allows detecting which ones move in 
conjunction. Their center of gravity (c.g.) motion is the 
basis for solving the so-called ‘Where’-problem in 2-D. 
The distribution of features around the c.g. allows 
generating hypotheses for shape, aspect conditions 
(‘What’-problem) and rotational motion as well as the 
translational component in direction of the optical axis 
(looming). Since ambiguous object hypotheses are often 
possible and disambiguation can be achieved only after 
some period of tracking, this hypothesis generation step is 
often organized in conjunction with the tracking 
algorithm. Three to five consecutive image evaluations for 
consistent groups of features have proven a good basis for 
starting a bet on an object hypothesis with a spatio-
temporal model [26]. 

 
3.2.2. Object tracking and relative state estimation 
 

If the number of features is small in the wide-angle 
image and the initial range hypothesis is large (derived 
from the lowest part of the vehicle (feature set) under the 
assumption of planar ground), then a gaze shift for 
centering the tele-image on the object is advised. In 
normal road traffic, the possible aspect conditions of a 
vehicle are constrained due to gravity. In figure 5 left, 
eight classes of aspect conditions are given. For one of 
those (seen from rear left, as occurring when starting a 
passing maneuver or when the road has a curvature to the 
left), the distribution of characteristic features is shown in 
the right part. Bold letters mark the simplest set of edge 
features for tracking [25, 30, 31]. When area-based 
features (like intensity shading, color or texture) are 
available, the other elements imaged from the car body 
may alleviate recognition and tracking. The rear group of 
lights carries even additional information when used as 
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stopping light or direction indicator (dual or single 
intensity changes left and right). Processing power 
becoming available now will allow using this information 
in the near future. 

Recursive estimation based on spatio-temporal 
models for shape and motion has been pioneered by our 
group [30] and has been generally adopted for relative 
state estimation in vision by the research and industrial 
community since. In many of the industrial application, 
active ranging by radar or lidar is used. With high 

resolution images and modeling according to figure 5, 
pure vision systems will probably be sufficient for normal 
weather conditions (as it is for humans!).  

Solutions to VT2 are obtained for single objects 
under observation; however, by different instantiations in 
different image areas, results for many objects in parallel 
may be obtained. About half a dozen objects in three lanes 
in each hemisphere have been tracked in [25] already. 
This may be sufficient for many applications also today. 

 
Single vehicle  
aspect graph: 

 
Fig. 5: Aspect graph for a vehicle V (left part), and visualization of typical (image) features for a car seen from rear left 
(like in passing). 
 
3.2.3. Dynamic Object dataBase (DOB) 
 

In order to be able to evaluate what is happening in 
the environment, the different parallel results from step 
VT2 have to be analyzed in conjunction. As basis for this 
step, the best estimates for the relative states of all objects 
observed are collected in a database updated at video rate 
(see left center part of figure 4, above). For some 
variables, a ring buffer may be specified for tracking the last 
n values of state variables (their sampled time history).  

As general framework for this representation, 
Homogeneous Coordinate Transformations (HCT) in 
combination with a so-called ‘scene tree’ have been 
adopted [32]. Contrary to computer graphics, where all 
transformation variables are known beforehand, these 
variables are the unknowns in vision and have to be 
iterated in order to match model predictions and images 
observed. For this reason, the Jacobian matrix of first-
order relations between visual features on the physical 

bodies (in 3-D real space) and features in the image planes 
have to be determined. They have to be computed for each 
object – sensor pair and allow spatial interpretation of 
objects without inverting perspective projection. A least-
squares model-fit in space and time does the job 
efficiently. The object-oriented scene tree serves for 
representing the spatial distribution of objects / subjects. 
Subjects are objects with the capability of sensing and 
ego-motion control. 

Figure 6 shows the scene tree for driving on a 
German Autobahn with three cameras mounted fix on a 
yaw platform (upper left part). Pitch angle control for the 
tele-image is done through a mirror for just the tele-
camera. Each node in the figure corresponds to an object 
(movable object part) or to a virtual frame of reference. 
Each edge in the tree represents an HCT with the number 
of degrees of freedom (dof) indicated. 

For proper road representation in generic form, the 
central part (vertically in figure 6 within the waved 
brackets) showing details of the driveway and of sub-
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objects along it, may be exchanged depending on the type 
of road encountered. Freeways, state roads, networks of 
minor roads in the countryside and urban roads with many 
different kinds of objects require different generic 
representations in order to be efficient. Not all sub-objects 
need to be present. Excluding those that cannot be 
encountered in certain domains reduces the set of 
potential object classes for hypothesis generation and thus 
increases efficiency. 

 
 
 
 
 

3.2.4. Trajectory-, maneuver- and intent recognition 
 

For reasonable behavioral decisions in traffic it is not 
sufficient to know the actual state of isolated single 
objects, but for a defensive style of driving it is necessary 
to have a deeper understanding of the traffic situation in 
the environment. Other subjects may react depending on 
what they see and believe the situation to be. This 
judgement of the interdependence of motion developing 
can best be derived from looking at a coarser time scale, 
taking typical maneuvers of traffic participants into 
account. This can only be achieved when the 
corresponding maneuvers are represented in generic form 
together with the situation when they should be applied.  

 

 
Fig. 6: Scene tree for driving on a German Autobahn with three cameras on a special platform with yaw control for all 
cameras and pitch control through a mirror for just the tele-camera. 
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This has to be available for own decision making 
anyway. Recognizing that these characteristic behavioral 
features of subjects can be used as abstract representations 
for characterizing subject classes, in general, has led to 
explicit representation of behavioral capabilities as 
knowledge elements for understanding subject motion. 

This allows recognizing maneuvers from a short 
initializing typical motion component (like lane change 
(intended) from a systematical change of lateral position 
towards the lane marking). Subjects in the environment 
can thus be labeled as performing some action; this can be 
taken into account for own decision making. As a new 
step in the development of autonomous systems, from 
this, the explicit representation of all kinds of capabilities 
has been derived. It has not yet been realized to full extent 
for perception, planning, decision-making, gaze- and 
motion control. However, it is felt that this is an important 
step to really autonomous systems capable of social 
cooperation and of learning.   
 
3.2.5. Integrated visual / inertial perception 
 

The own pose is derived to a large extent from 
inertial measurements and signal integration with little 
time delay. The relative position and orientation of other 
objects is hypothesized and updated based on vision with 
smooth sequences of parallel image streams between 
saccades. The internal representation of the situation 
perceived is a mental construct relying largely on spatio-
temporal models and prediction error feedback. It contains 
neither inertial nor visual data directly. Time delays 
between data exploited are bridged with these models. 
The latest update of the overall representation of the scene 
with the relevant objects is achieved after the longest 
delay time. Control output onto actuators takes the delay 
times into account via model-based prediction [33-37]. 

Figure 7 is meant to symbolize this ‘extended 
presence’ and the stabilized internal representation 
unavoidable with the mix of data and time delays in the 
overall system. High-frequency feedback loops with little 
delay time are running in parallel with slower loops based 
on high-level models including delay time compensation. 
This multiple scale solution is quite natural in distributed 
systems with different types of models on the different 
levels. Corresponding time constants for filtering allow 
efficient data processing. For example, the bias in pitch 
angle due to fuel consumption over longer time periods 
can be determined and compensated by a very-low-
frequency model superimposed on the other ones. 

 

 
 
Fig. 7: Integrated visual / inertial perception by recursive 
estimation with spatio-temporal models and time delay 
compensation. 

  
4. SITUATION ASSESSMENT 

 
Judging the overall situation based on the best estimates 
of relative states of other objects/subjects is a process, 
which need not run at video rate, for example. When new 
feature sets are discovered which may be indications of a 
new obstacle, delay time until a proper reaction is 
triggered should be minimal; however, this may even be 
possible without understanding the new situation to the 
full extent. Therefore, a dual approach with a fast reflex-
like reaction in the safe direction to the object in isolation, 
and a new evaluation of the situation with more time 
delay seems a good approach. For arriving at these 
behavioral decisions, separate evaluation processes have 
been realized. There are two on the process control level, 
one for gaze and attention, the other one for vehicle 
locomotion. They do have access to the description of the 
actual situation produced mainly (but not exclusively) by 
a third unit called ‘Central Decision’ (CD). CD has to 
come up with an evaluation of all objects/subjects in the 
context of own mission performance indicating which 
ones are most relevant and which ones may be discarded 
for decisions on the local level.   

The situation is described by adding linguistic 
situation aspects to objects/subjects in the scene tree [22, 
23]. For practical reasons, additional local storage and 
pointers often realize this.  
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5. BEHAVIOR DECISION AND 
IMPLEMENTATION 

 
Figure 8 gives a symbolic description of the hierarchical 
behavioral decision units. The central polyhedron 
symbolizes the collection of situation aspects derived 
from observing time histories of state variables in the 
scene tree, referring these to known behavioral 
capabilities and recognizing maneuvers under 
performance or hypothesizing intentions for the near 
future.  

CD takes care of setting the side constraints for 
achieving the mission goals. Typical tasks here are 
specifying the sequence of mission elements to be 
performed and setting reference parameters for the lower 
levels (like average speed for the mission element) [29]. 
The local decision units for gaze and attention (BDGA) 
and locomotion (BDL) then perform their decisions 
autonomously taking their more detailed knowledge about 
the behavioral capabilities in their category into account 
[35]. Especially, this level can initiate first reactions to 
unexpected obstacles [36]. CD may later on revise them, 
if necessary. In case of conflicts or if it is impossible to 
realize the behavior requested from CD, an information 
exchange is initiated for finding a solution acceptable to 
both sides. 

 
6. HARDWARE REALIZATION 

 
Figure 9 shows the hardware realization of the EMS 
vision system in the test vehicle VaMoRs (lower right 
corner) on a cluster of four PC plus two subsystems (19’’-
units in lower right). Three DualPentium PC (mounted 
also in a 19’’ rack) perform image evaluation for the 
different cameras. They are configured as embedded PC 
by a special software package (EPC). PC1 essentially 
evaluates the images of the wide-angle cameras for 
recognizing the near road environment. PC2 analyzes the 
color images of the mild tele-camera, and PC3 is reserved 
for monochrome tele-image evaluation (e.g. for landmark 
recognition). 

On the fourth PC (‘behavior PC’, to the right) all data 
evaluation results converge for situation assessment and 
decision-making (CD, BDGA and BDL in the lower left 
corner). The subsystems for interaction with sensors and 
actuators are linked to the corresponding processes (GC 
for gaze control, and VC for vehicle control). 

A Scalable Coherent Interface (SCI) for inter-
processor communication with up to ~ 100 MB/s data rate 
also serves for synchronization between the different 
distributed processes. Dynamic knowledge representation 
(DKR) is kept identical for all processors by regular 
updating at video rate. To the ‘Behavior PC’ also the 
receiver for the Global Positioning System (GPS) and the 

Human Machine Interface (HMI) are connected, through 
which all commands from the operators are handled. 

 
Human person as

system operator          active driver

Behavior
Decision

for
Locomotion

(BDL)

Behavior
Decision for
Gaze and 
Attention
(BDGA)

Central representation
of situation with

many aspects
Actualization (A) &
extension
of situation
description

Evaluation (E)
of situation-
representation

E

E

E

A

A

Mission-
planning

side constraints

Coordination;
prescription of
alternatives for
decisions;
prioritization

conflicts

side constraints Reports

side constraints

Situation
aspects

A

Behavior
Decision

for
driver Assistance

(BDAs)

Central Decision
 (CD) Vehicle

E

Behavior
for driver

assistance

A

 
Fig. 8: Hierarchically structured, distributed decision 
agents based on competencies: For visual perception 
(lower center), locomotion (lower left), driver assistance 
(lower right), and for overall systems aspects (center top); 
a common representation of the situation is desirable 
[after 23; 35] 
 

 

 

Fig. 9: Hardware realization on a cluster of PC’s plus two 
subsystems for hardware interfacing (gaze and vehicle 
control). 

 
7. EXPERIMENTAL RESULTS 

 
EMS-vision has mainly been tested on a network of minor 
roads with missions as they usually occur in military 
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scouting. Both recognizing crossings with turnoffs onto a 
crossroad (left and right) and leaving roadways for driving 
cross country on grass surfaces as well as entering roads 
after these maneuvers have been demonstrated. During 
cross-country segments, detection and avoidance of 
negative obstacles like ditches have been demonstrated. 
For the latter task, a very powerful additional subsystem 
for stereo-detection and tracking of negative obstacles has 
been integrated in a joint project with US-partners [20]. 
Up to 80 billion operations per second have become 
available for stereo interpretation by this system. While 
the Pyramid Vision System PVS-200 of 2001 required a 
volume of about 30 liters, in 2002 the new ‘Acadia’-board 
as a plug-in card into a PC became available and allowed 
full-frame, full video rate stereo evaluation in conjunction 
with EMS-vision. Joint intensity and stereo evaluation 
allowed robust ditch detection and tracking while driving 
on non-flat ground and bypassing the ditch with MarVeye 
keeping the bypassed end fixated [38]. 

Figure 10 shows test results from detecting, tracking 
and turning-off onto a crossroad. 10a shows the yaw (pan) 
angle time history of the platform during this maneuver. 

From second ~ 90 to 110 a saccading maneuver in gaze is 
performed in order to alternatively collect data on the 
crossing (distance and speed of approach) and on the 
geometry of the crossroad (width and angle of 
intersection). In 10b the saccade bit is shown telling the 
image evaluation processes whether it makes sense to 
process images or whether the images are blurred and they 
should stick to prediction with spatio-temporal models 
(when the bit is up). From sub-figures 10c - e the objects 
observed can be seen. The crossroad is inserted into the 
scene tree at around 90 seconds and becomes the new 
reference road (split into local (near) and distant) at 
around 115 seconds (s). During approach of the 
intersection (10f), the gaze angle in yaw increases up to ~ 
60° (10g, h), telling that the vehicle turns its viewing 
direction ‘over the shoulder’ while driving still straight 
ahead on the old road. At ~ 116 s reorganization of the 
scene tree is finished with the old crossroad now being the 
new reference road. The gaze angle of MarVEye is 
constantly in direction of this new reference while the 
vehicle turns underneath it until at ~ 130 s gaze is almost 

 
Fig. 10: Time histories of variables in EMS-vision in VaMoRs for detecting a crossroad and turning-off onto it 
autonomously. 
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in direction of the body longitudinal axis again (10i. j). 
(These figures show the best viewing ranges (VR) as 
evaluated by BDGA. Small offsets from zero may stem 
from the fact that the system is preparing for leaving the 
road and turning onto the grass surface; since only one 
boundary of the road can be tracked by the tele-camera at 
the range specified, the gaze angle selected is 2° (10i, 
right). 
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