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ABSTRACT

In this paper, we propose a fast and robust stereo algorithm
to perform in-vehicle obstacles detection and characteriza-
tion. The stereo algorithm used is called the ”v-disparity”1

algorithm which provides a suitable representation of the
geometric content of the road scene. The stereo algorithm
principle is described, and then the in-vehicle embedded
system is presented. This system can be divided into two
main stages. The first one deals with onboard road obstacles
detection (the focus is put on obstacle areas and free road
surface extraction), whereas the second one is about ob-
stacles characterization (car/truck discrimination). For each
stage, we first present the way in which the ”v-disparity” al-
gorithm is used, and then report representative experiments
on real situations which show that our solution is accurate,
reliable and efficient. In particular, both processes are fast,
generic, robust to noise and bad conditions, and work even
in the case of partial occlusions.

Keywords : Stereoscopic vision, In-vehicle obstacles detec-
tion, Obstacles characterization.

1. INTRODUCTION

In the context of Intelligent Vehicles Systems, in-vehicle
road obstacles detection is an essential task. It must be per-
formed in real time, robustly and accurately, without any
false alarm and with a low detection failure rate. First, ob-
stacles must be localized on the road; additional information
such as obstacles characterization (car/truck discrimination,
and also speed computation and trajectory recovery) can be
interesting in order to predict their dynamic evolution.

Stereovision is often used to this purpose [1] [2] [3] [4] but
algorithms are sometimes not precise or fast enough to be
used efficiently. In this paper, we present a stereo algorithm
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1v is the ordinate of a pixel in the (u,v) image coordinate system

that can be used as the basis of obstacles detection and char-
acterization in the automotive context. The proposed algo-
rithm provides robust 3D global data that can be used effi-
ciently for in-vehicle real time applications where the stereo
sensor is moving.

Our stereo algorithm is based on the construction and subse-
quent processing of the ”v-disparity” image. This image is
obtained from a pair of stereoscopic images, after the com-
putation of a sparse and rough disparity map (by ”rough”,
we mean that it can contain numerous false matches; on the
other hand such a disparity map is computed very quickly).
From the ”v-disparity” image, it is then straightforward to
detect specific planes or cylindrical surfaces in the scene in
a robust, fast and effective way (even in the event of par-
tial occlusion or false matches). Thus, a good representa-
tion of the 3D geometric content of the scene is obtained
and these data are used as the input of the obstacles detec-
tion/characterization system.

The obstacles detection process can provide two different
sets of data. The first one is a set of global obstacles in the
road scene (cars, trucks). The second one is obstacle areas,
which include these global obstacles, and also all the ob-
jects located above the road surface (small obstacles on the
side of the road, etc.). Concerning the obstacles detection
stage, the main novelty shown in this paper deals with the
improvement of the obstacle areas thanks to the improve-
ment of the rough disparity map, even when the road is
paved or dirty.
The obstacles characterization process uses the set of global
obstacles detected in the previous stage. Car/truck dicrimi-
nation is performed robustly.

The reminder of the paper is organized as follows. Sec-
tion 2 details the models we have used with respect to the
stereoscopic sensor and the domain of validity of our study.
Section 3 deals with the construction of the ”v-disparity”
image from a pair of stereoscopic images and presents a
robust method for detecting specific surfaces in the scene.
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Section 4 presents the in-vehicle obstacles detection system
and stresses the improvement of the disparity map (and sub-
sequent obstacle areas) from the ”v-disparity” image. Sec-
tion 5 is about the obstacles characterization system. The
last two sections include representative experiment reports
on real situations.

2. HYPOTHESES AND DOMAIN OF VALIDITY

2.1. Modeling of the stereo sensor

The two image planes are merely in the same plane and at
the same height above the ground (see Fig. 1). This camera
geometry means that rectified images are obtained directly
(the epipolar lines are parallel).

Fig. 1. The stereo sensor and the coordinate systems used

In what follows we will need to perform positioning in three
coordinate systems shown in Fig. 1 :Ra (absolute),Rcr

(right camera) andRcl (left camera). The other parameters
on the diagram are as follows:

• θ : is the angle between the optical axis of the cameras
and the horizontal,

• h : is the height of the cameras above the ground,

• b : is the distance between the cameras (i.e. the stereo-
scopic base).

In the camera coordinate system, the position of a point in
the image plane is given by its coordinates(u, v). The co-
ordinates in the image of the projection of the optical center
will be denoted by(u0, v0), assumed to be at the center of
the image. A projection on the image plane is expressed by:{

u = x
z

v = y
z

(1)

The intrinsic parameters of the camera aref (the focal length
of the lens),tu andtv (the size of pixels inu andv). We
also useαu = f/tu andαv = f/tv. With the cameras
in current use we can make the following approximation :
αu ≈ αv = α.

On the basis of Fig. 1, the transformation from the abso-
lute coordinate system to the camera coordinate system is
achieved by the combination of a vector translation~t =
−h~Y + εi

b
2

~X (with εi = −1 in Rcl or 1 in Rcr), and a

rotation around~X by an angle of−θ. Let Ti denote the
translation matrix,R the rotation matrix andDi = RTi the
result transformation matrix. In homogeneous coordinates,
the different transformation matrices are therefore:

Ti =


1 0 0 −εi

b
2

0 1 0 h
0 0 1 0
0 0 0 1

 (2)

R =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 (3)

Di =


1 0 0 −εib/2
0 cos θ − sin θ h cos θ
0 sin θ cos θ h sin θ
0 0 0 1

 (4)

wherei is equal tor, l (right and left).

It is necessary to perform a perspective projection in order
to express fully the coordinates of the points in the image
plane coordinate system. The perspective projection matrix
Mproj is expressed as follows:

Mproj =

 αu 0 uo 0
0 αv vo 0
0 0 1 0

 (5)

Finally, we obtain the matrix of transformationTri from the
absolute coordinate systemRa to the image coordinate sys-
temi (i is equal tol or r):

Tri = MprojDi = (ttijk)j=1..3,k=1..4 (6)

If P is a point with coordinates(X, Y, Z, 1)T in Ra, its
homogeneous coordinates in the image coordinate system
i are:

p = TriP = (x, y, z)T (7)

On the basis of (1), we can then compute the(u, v) coordi-
nates ofP .
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Fig. 2. The domain of validity of the study

2.2. Domain of validity

The aim of this study is to segment the environment into
planes which are horizontal, vertical or oblique with respect
to the plane of the stereoscopic sensor, as shown in Fig.2.
The normal of the studied planes is therefore in a vertical
plane which is oriented with respect to the optical axis of
the cameras.

In a cross-section of the scene in the optical axis of the cam-
eras, the projection of any of the planes in question is a
straight line. In the rest of this paper we will build and use
a specific image in which the detection of straight lines will
be equivalent to the detection of planes in the scene. Indeed,
we will represent thev coordinate of a pixel towards the dis-
parity ∆ (performing accumulation from the disparity map
along scanning lines) and detect straight lines and curves
in this 2-Dv −∆ image (denoted byIv∆). The next para-
graph deals with the mathematical matching between global
surfaces in the 3D scene and straight lines in this image.

2.3. The image of a plane in the ”v-disparity” image

This section describes the projections of the different planes
that are considered in the ”v-disparity” image (see Fig. 2).

Let P be a point with coordinates(X, Y, Z, 1)T in Ra. Sys-
tem (1) allows us to compute the projection of this point
in both images. As the epipolar lines are parallel and fol-
low the image scanning lines, we again havevr = vl = v
where:

v =
[v0 sin θ + α cos θ](Y + h) + [v0 cos θ − α sin θ]Z

(Y + h) sin θ + Z cos θ
(8)

We can also deduce from this the disparity∆ of the point
P :

∆P = ul − ur =
αb

(Y + h) sin θ + Z cos θ
(9)

From (9) and (8) the plane of the equationZ = aY + d
is projected along the straight line of equation (10) in ”v-
disparity” image:

∆ =
b

ah− d
(v−v0)(a cos θ+sin θ)+

b

ah− d
α(a sin θ−cos θ)

(10)

From (9) and (8) the plane of the equationY = c is pro-
jected along the straight line of equation (11) in ”v-disparity”
image:

∆ =
b

(c + h)
(v − v0) cos θ +

b

(c + h)
α sin θ (11)

3. ”V-DISPARITY” IMAGE CONSTRUCTION AND
3D SURFACE EXTRACTION

We suppose that a disparity mapI∆ has been computed
from the stereo image pair. For example, this map is com-
puted with respect to the epipolar geometry; the primitives
used are horizontal local maxima of the gradient; matching
is local and based on normalized correlation around the lo-
cal maxima. For example, in the experiments shown in the
next sections, the threshold of the horizontal gradient is8,
and the size of the correlation window is9x1 pixels. Thus,
the matching process is very simple and fast.

OnceI∆ has been computed, the ”v-disparity” imageIv∆

is built by accumulating the pixels of same disparity inI∆

along the~v axis.

From (10), extracting straight lines or curves from the ”v-
disparity” image leads to extract 3D global surfaces in the
scene. Any robust 2D processing can be used to this pur-
pose, like the hough transform. Details are given in [5]. In
what follows we will suppose that the ”v-disparity” image
is built and that global surfaces have been extracted.

4. OBSTACLES DETECTION SYSTEM

The global obstacles detection process is described in [5].
The extracted global surfaces correspond either to the road
surface, or to obstacles. All needed information for per-
forming generic obstacles detection is then deduced in a ge-
ometric way: vehicle pitch, obstacles-road contact points,
distances computation (see Fig. 3). The accuracy of the al-
gorithm is evaluated [6]. An extension of the algorithm is
presented in [7] and leads to the estimation of roll and yaw
angles of the vehicle.
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Fig. 3. In-vehicle obstacles detection framework including improvement of the disparity map and obstacle areas.
(a): left original image. (b): right original image. (c): rough disparity map computed from the images (a) and (b). (d): the
grey level ”v-disparity” image corresponding to the disparity map (c). (e): extracted lines from the ”v-disparity” image (d).
(f): road-obstacle contact line in the right original image (b). (g): obstacles areas (in white) computed from the disparity map
(c) and the extracted lines (e). (h) improved disparity map computed from the images (a) and (b) and from the extracted lines
(e). (i): the ”v-disparity” image corresponding to the improved disparity map (h). (j): obstacles areas (in white) computed
from the improved disparity map (h) and the extracted lines (e). The grey pixels correspond to the disparity values on the
road surface.
In the disparity maps (c) and (h), the disparity increases the higher is the grey level of the pixels. In (c), there is a lot of false
matches but also good matches, especially on the road markings.
It is interesting to compare (c) and (h), (d) and (i), (g) and (j). (h), (i) and (j) are of far better quality.
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4.1. Disparity map improvement and obstacle areas ex-
traction

In order to fastly compute the ”v-disparity” image, a sparse
and rough disparity map has been built. This disparity map
may contain numerous false matches, which is not a seri-
ous issue to extract global surfaces from the ”v-disparity”
image. However, in order to extract the obstacle areas, we
should use a disparity map with very few false matches; oth-
erwise these areas could be uncorrect. False matches are es-
pecially likely to occur in textured and repetitve areas, for
instance on paved or dirty roads. So, in order to extract
reliable obstacle areas on any road, false matches must be
removed. This can be done thanks to the global surfaces
extracted from the ”v-disparity” image (see Fig. 3). Thus,
we check wether a pixel of the disparity map belongs to any
global surface extracted using the same matching process
(cf. Section3). If it is the case, the disparity value of the
surface is mapped to the pixel. If not, that means that the
pixel do not belong to any global surface: i.e. it belongs to a
small obstacle. In practise, a short range of2 pixels (along
bothu andv axis) around the disparity value of each global
surface is investigated, in order to cope with some possible
imprecision with respect to the extraction of the surface or
with respect to the possible uncorrect sensor configuration
and calibration mistakes.

Thus, the idea is to improve the disparity map from the geo-
metric knoweldge about the scene obtained from the rough
disparity map. In other words, the process is made of three
stages (local, global, and local). The difference between
the first and last local stages is that no knowledge is avail-
able in the first one, whereas the global geometric content
of the scene is known in the last one. This incremental ap-
proach allows to obtain a disparity map of good quality and
ensures computational speed. Such features could not have
been achieved whitout the second global stage.

4.2. Results

We show the results from a paved road (see Fig. 3 [(h,j)] and
Fig. 4), where the rough disparity map contain a lot of false
matches. After improvement, the number of false matches
on the road has been steadily reduced. Thus, the obstacle
areas can be extracted in a far more reliable way, using a
morphological operator to remove the very few remaining
false matches, if needed. The disparity of some obstacle
pixels can still be erronous, but that does not constitute any
serious issue to extract the obstacle areas. From the obsta-
cles areas, it is also possible to extract the free road surface
in an accurate and efficient way, using a growing area algo-
rithm: at the moment it is extracted as the convex area on the
road limited by the obstacle areas. The improvement of the
disparity map is performed within 100 ms. The whole ob-

Fig. 4. Results of in-vehicle obstacles detection (obstacles
areas in white). The grey pixels correspond to the disparity
value on the road surface. (a): a car is overtaking on the
left at the entrance of a paved area. (b): there is no noisy
obstacle pixel in a repetitive textured road area.

stacles detection process is performed within 150 ms using
a 1.4 GHz processor. Image resolution is 380x288 pixels,
and the focal lenght of the cameras is8.5 mm.

5. OBSTACLES CHARACTERIZATION SYSTEM

Once the set of global obstacles is obtained, obstacles char-
acterization is performed.

5.1. Car/truck discrimination

The discrimination is only based on the height of the vehi-
cles: a vehicle is considered to be a car if its height is below
2 meters. On the contrary, a vehicle is considered to be a
truck if its height is above2 meters. In addition, we will
consider that the height of a truck is below5 m.

Thus, in the ”v-disparity” image, we consider two different
areas: the first one is located between the road surface and
2 meters above the road surface, the second one is located
between2 meters and5 meters. These areas are determined
as follows. The extraction of the profile of the road leads to
an estimation ofθ andh, using (11) withc = 0 (details are
give in [5]). Thus, il is easy to deduce the equation of the
projection of the planesY = −2 andY = −5 in the ”v-
disparity” image, using (11). The resulting areas are shown
in Fig. 5 - (e), (f).

The question is then to know in which area are projected
global obstacles already detected. To this purpose, for each
global obstacle, we accumulate all the pixel grey values of
the ”v-disparity” image in each (car/truck) area. If the ob-
tained value in the car area is above a threshold, it is then
checked wether the obtained value in the truck area is above
a threshold (See Fig. 5). Thus, the obstacle is characterised
to be either a truck or a car. We do not use all the pixels
of the disparity map, but only the ones located on the road:
to this purpose, either a static mask or a dynamic area com-
puted using a lane detector algorithm (inspired by [8]) is
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Fig. 5. In-vehicle obstacles characterization framework.
(a): left original image. (b): right original image. (c): disparity map. (d): ”v-disparity” image. (e): mask corresponding to
cars (V.L.) area in ”v-disparity” image. (f): mask corresponding to trucks (P.L) area in ”v-disparity” image. (g): result of
obstacles characterization.

Fig. 7. Results of in-vehicle obstacles characterization:
car(V.L)/truck (P.L.) (a): a car and an truck in the right lane.
(b): the car has been overtaken.

used. In order to compute the speeds and recover trajecto-
ries of vehicles, a traking and associative algorithm can be
used (cf. [9]).

5.2. Traffic monitoring system

It should be noted that the characterization algorithm can
be used as a traffic monitoring system in the case where the
stereo sensor is motionless and fixed above an highway, for
instance. In this case, it is possible to perform vehicle count-
ing, speed computation, accident detection. Experiments
have been carried out. Representative results are shown in
Fig. 6.

5.3. Results

In the tested sequences, the rate of good characterization is
100% (see Figs. 6 and 7). However, these results are not
statistically valid since the amount of processed sequences
is too low (785 pairs of images processed).

5.4. Some good properties of the system

The ”v-disparity” algorithm is characterised by good prop-
erties presented in [5] and [6]. First, since it is based on
a geometric representation of the scene, the system works
whatever can be the aspect of the road (shadows, dirty ar-
eas, oil, water, etc). Second, the longitudinal profile of the
road is estimated so the system works whatever can be the
road surface. Third, the system can detect any obstacle on
the road since the detection is generic, even in the event of
partial occlusion. Last, the global obstacle detection and
characterization system is very robust to noise or bad con-
ditions (weather, night) (experiments have been carried out
in [6]) and runs in real time using no special hardware.

6. CONCLUSION

In this paper we have described a fast and robust stereovi-
sion algorithm (the ”v-disparity” algorithm) for determining
the global geometric content of a scene. An in-vehicle ap-
plication using these data has then been described. These
application can be divided into two main stages. The first
one is an in-vehicle obstacles detection system. An im-
provement of the obstacle areas has been proposed, so that
the extraction of this area is reliable on any road, including
paved roads. The second one is an in-vehicle obstacles char-
acterization. Both stages profit from the good properties of
the ”v-disparity” algorithm: computational speed, robustess
towards noise and bad conditions, genericity. Experimen-
tal results show that the system works efficiently in the road
context. Future work will be concerned with the quantitative
evaluation of the new improvements towards a large amount
of real situations.
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Fig. 6. Traffic monitoring results.
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