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ABSTRACT 

 
First, the paper presents some basic considerations of how 
specific behaviours are learned from complex sensor 
input. These thoughts are exemplified by a system that is 
able to learn to drive different cars in different 
environments exclusively by vision. The basic idea that 
learning is nearly always the acquisition of task-relevant 
probabilities is detailed and a general method how this 
idea may be implemented for the different subtasks is 
proposed. Neither explicit modelling nor soft-computing 
methods have been employed for this task. Our approach 
is primarily memory based and tries to approximate the 
probability density functions that rule the behaviour of 
task learning systems. The general paradigm of the 
approach is that at several levels mainly pattern matching 
techniques are necessary. Finally, some details of the 
implementation and results on learning visual autonomous 
driving are given. 
 

1. BASIC IDEAS OF SYSTEM MODEL 

Fixed patterns constitute a gestalt. This term has a quite 
long history in psychology and several gestalt-laws have 
been discovered. Basically the gestalt constitutes a 
mechanism to condensate different stimuli, which may be 
completely unrelated at a first glace, into a new entity: just 
the gestalt. From this formulation the reader may already 
suspect the relation to visual learning, but first we want to 
prepare the necessary ingredients of the gestalt endowing 
mechanism. 

Some states s* of the environment of an organism are 
of real importance for its survival and some are not. 
Therefore every system that has a goal must try to 
protocol and evaluate the relevant states and the 
conditional probabilities p(s*/s#). I.e. the probability a 
current state s# will generate such an important state s*; 
possibly over a chain of other states.  

These probabilities deliver the objective basis for 
decisions the system has to take. In most cases a state s# is 

not directly accessible but can be associated with a 
measurement pattern  m# e.g. an image. 

As common in control theory in the following we will 
use vectors for states s and measurements m.  

For a rather large class of tasks with practical 
relevance it is nearly always possible to eliminate time 
dependencies by introducing new components to the state 
vector and thus use markov process as the description 
framework. It is easily seen that this description of the 
interaction between system and environment yields of 
markov random process with hidden states. 

In analogy with leaning theory we call the different 
possible actions that have to be chosen in a state a policy 
p. 

Fortunately for a lot of tasks it can be assumed that the 
policy over state space is steady and "flat" i.e. small 
changes in state create no catastrophic changes in the 
appropriate policy. At least such instable regions in state 
space should be restricted to few places. 

By this assumption it is possible to use methods from 
steady function in combination with the markov process 
description. I.e. at least locally the discrete state 
measurements can be steadily approximated and the 
policy can be optimised by a local approximation 
function. 

Also it is common knowledge that in organisms, due 
to the slow processing elements only few processing steps 
between recognition of a pattern and a reactive action are 
possible. Therefore one basic consideration in our system 
is to have the shortest possible connection between 
recognition and behaviour. Due to the same argument 
similar approaches have been tried with neural networks 
(e.g. ALVIN [1]). There the neural net was used as an 
approximating function for the policy and implicitly the 
same assumptions have been made as stated above.  

To reach greater transparency of the internal system 
function and to acquire the ability to fine tune the systems 
parameters we decided to use primarily a memory based 
approach. An additional motivation was that in organisms 
reactive behaviours could also be mainly memory based 
(admittedly on a parallel distributed hardware). Therefore, 
our approach tries to implement the approximation of the 
state and the policy function by adapted data structures.    
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Learning in this framework means to prepare the 
appropriate data structures and of course mechanisms to 
fill and access them quickly but also to weight and 
memorize the appropriateness of behaviour at a certain 
situation s#. 

To force flexibility into the system as little task 
specific knowledge as reasonable and possible should be 
build in. 

Thus, our Approach tries to rely as less as possible on 
rigidly programmed models of task specific knowledge to 
guarantee flexibility and expandability. 

Learning of mentioned conditional probabilities may 
be interpreted in psychological terms as completion of 
patterns. This way the well introduced methods of pattern 
recognition may be employed. To the gestalt principle 
which was thoroughly investigated in psychology there is 
fundamentally no difference between patterns distributed 
in space or in time. Thus, by gestalt completion also 
prediction is possible generating the ability to judge about 
unmeasured parts of the patterns and their attached states. 

Also it has to be stated that within one state 
conditional probabilities exist which allow to recognise 
the state by only a part of its complete information. Thus 
the gestalt can be completed from the features of a 
situation. 
 

2. IMPLEMENTATION OF THE BASIC IDEAS 

For a specific application the general consideration 
sketched above can be implemented in three steps: 

 
- identify the task relevant conditional probabilities 
- approximate their distribution by discrete function 
- interpolate locally to improve the precision 
 
The first question is: it is possible by sheer pattern 

recognition to find the appropriate state and behaviour? 
Additionally, it is clear that such a system needs a large 
number of patterns (> 5000). 

 
3. SYSTEM OVERVIEW 

As an application to demonstrate the basic ideas we have 
chosen the task to drive a car with unknown dynamics on 
an basically unknown track by visual input. Vision is very 
appropriate if a non trivial relation between measurement 
m# and state s# should be investigated. Due to a number 
of effects like perspective projection, occlusion, 
illumination etc., the relation is very non-linear and 
complex. 

So, the system is confronted to the situation a human 
is in when he starts to learn to play a computer game of 

car racing. In specific, in a graphical simulation the 
system is required to steer an autonomous car along a 
curvy and hilly road course with no intersections and no 
other vehicles respectively obstacles on the road but with 
the strict requirement to self-improve driving behaviour 
based on delayed, self-created rewards or punishments. 

 
 

 
 
Figure 1: Wire frame model of an example track 
 
The goal is not to follow a specific trajectory as it 

would be necessary in normal traffic but to drive as fast as 
possible. I.e. to learn a policy that optimises the 
longitudinal and lateral control for time optimal motion. 
Due to the fact that the dynamics of the vehicle are 
unknown standard methods from control theory are not 
applicable. 

 

 
 
Figure 2: Example Image 
 
The task may be divided into three subtasks as shown 

in figure 3: INTELLIGENT IMAGE PROCESSING 
(IIP), PATTERN MATCHING (PM) and 
REINFORCEMENT LEARNING (RL). 

Handling a video stream in real-time urges the need to 
reduce the bulk of information. Because we want to build 
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a flexible system this reduction mechanism should not be 
hardwired but able to learn the task relevant features at 
least to a certain degree. The subsystem INTELLIGENT 
IMAGE PROCESSING (IIP) is responsible for processing 
the incoming video stream and the real-time calculation of 
a reduced parametric description of every single image 
called Abstract Complete Situation Descriptions 
(ACSD’s). 

 
Figure 3: Structure of the system 
 
From all the possible actions p in a situation s# at least 

one has to be selected for execution. Thus, the system has 
to learn to find the appropriate p# to a measurement m#. 
This task is performed by the Subsystem PATTERN 
MATCHING (PM). It has the task to retrieve similar 
measurements m in comparison to the actual measurement 
m# from the camera. A large number of previously 
recorded situations, respectively their ACSD’s, is being 
stored in a pattern database which is being accessed by the 
subsystem PATTERN MATCHING in two ways: Firstly, 
the Subsystem PM scans the pattern database for similar 
situations in comparison to the actual one; secondly, it 
also stores the ACSD of the actual situation together with 
the actual steering commands for further reference.  

Because not only one measurement m might be similar 
to the actual one (m#) and thus several behaviours might 

look adequate a mechanism is needed to optimise the 
policy and to compute behaviours not previously 
recorded.  

The subsystem REINFORCEMENT LEARING (RL) 
is responsible for determining a suitable behaviour in 
terms of steering commands for the current situation. This 
determination is based on the actual situation in 
conjunction with previously recorded, similar situations 

and their issued steering commands. For such task it is 
crucial to rate the appropriateness of any previously 
issued steering command, otherwise optimisation of 
behaviour would not be possible. Therefore, this 
subsystem is also responsible for weighting the success, 
respectively the appropriateness of any calculated steering 
command and also copes with the difficulty that such 
appropriateness can often only be determined after a quite 
long time delay. 

Behaviour Interpolation 
and optimisation

Record
& StorePattern

Database

Steering Commands

Calc. of Abstract Complete Situation Descriptions (ACSD's)  

Retrieval of 
similar situations

Steering Wheel,
Brake and Accelerator

Videocamera

Reinforcement
Learning Pattern Matching

Intelligent Image
Processing (IIP)
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4. RELATED WORK 

Up to now the visual control of systems for autonomous 
vehicle driving with learning components have been 
implemented in several ways. [1] describes a short direct 
connection between image processing and one soft 
computing learning method using a neural network. This 
approach provides good results but only for as long as 
input pictures of the scene are quite similar to the training 
pattern. In several variations, neural networks for this task 
have been used. 

A completely different approach is being followed by 
using explicit modelling. [2] describes an early success 
with international attention of a vehicle system using a 
real-time vision system BVV2 [3]. Further developments 
stayed with the aspect of modelling, thus always in need 
for loading the system with many parameters for the 
modelling process.  

The presented approach is a study of avoiding both 
neuronal networks or similar approximation methods as 
well as explicit models. It gathers all information purely 
from incoming images. It derives a situation description of 
the scene and develops a driving behaviour by a 
optimisation technique. With reference to the need for 
machine learning capabilities the current research follows 
the basic principles of Reinforcement Learning (e.g.[5]) 
and focuses on a way of combining such area of research 
with pattern recognition algorithms. 

 
5. SUBSYSTEM IMAGE PROCESSING 

A single connected camera is delivering the video stream 
from the environment. For each single image an abstract 
complete situation description (ACSD) of the situation of 
the vehicle has to be computed. Such conversion is 
basically a reduction process and in addition to the 
requirement of reducing the streaming video information 
to the relevant parts, the calculation of such ACSD’s has 
to be very quick. Therefore, this subsystem combines 
traditional edge finding operators in order to locate 
contrast differences with a new technique of Bayes 
prediction in order to predict whether a contrast difference 
results from a road mark edge.  

During the runtime of the system, a first pass scans for 
horizontal colour contrast differences by a conventional 
filter technique and memorises all locations where the 
colour values of two neighbouring pixels from the Single 
Image represent a possible candidate of a Road Mark 
Edge or lane border.  

In a second pass, those candidates are fused into 
higher order objects i.e. road marks by chaining them 
together. The chaining is supported by the statistics which 

indicate the expected orientation of the road course in this 
location within the Single Image. If a chain can be 
established and fulfils minimum requirements on length 
and number of interconnection points in between, the 
whole chain is being stored as a confirmed representation 
of a Road Mark Edge. Otherwise, the considered 
candidates of Road Mark Edges are being rejected.  

 
5.1 Usage of pre-build knowledge on road courses 
 
As already stated the knowledge of the appearing of road 
mark edges or lane borders is not hardwired into the 
system. The knowledge of the typical shape of marking 
lines has first to be learned. After gathering this 
knowledge it can stabilize and speed up the search 
process. 

If we assume a certain pixel to be on the road mark we 
want to know the probabilities of the surrounding pixel 
also to be on the road mark. Additionally for the search it 
would be advantageous to know the pixel position that 
lies on the road mark with the highest probability. As the 
reader may recognise, we just applied the basic 
consideration to the specific problem here. 

I.e. we have to learn the conditional probability 
density function: 

 
)|( ,, jyixyx PPf ++     (1) 

 
with: 

yxP , is the event that the pixel at (x , y) is on a Road 

Mark Edge 
 is the event that the pixel at (x + i , y + j) is 

on a Road Mark Edge. 
jyixP ++ ,

 
This function is quite smooth in the near region of the 

road image but depends obviously on (x, y). It also 
depends on several other factors like the actual course and 
vehicle dynamics but these influences are assumed to be 
stable and representative over the learning phase. 

 To reach a practical implementation the function is 
approximated by a discretely sampled version: 

 
p(Px,y | Px+i, y+j)    (2) 
 
 Therefore, the Single Image is separated into Tiles 

and a separate function px,y is estimated for each Tile. One 
connection between P x, y and P x + i,  y + j is called a 
Chaining Vector. So, this function can not only be utilised 
for describing the statistical properties of Road Mark 
Edges but also for defining a search strategy, i.e. all the 
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Chaining vectors belonging to the position (x, y) can be 
searched in the order of their probability thus optimising 
the search speed. The grid size i, j and their maximum 
value i.e. the size of the context that is considered are the 
most important parameters of the method.  

If we turn our argument to psychological terms the 
method performs a spatial gestalt completion: by knowing 
part of the pattern the rest of it can be derived more stable 
and rapidly. 

During learning, in a large number of different Single 
Images of representative road scenes the relevant borders 
are marked by a human teacher. Form the labelled images 
the conditional probabilities according to (2) are 
computed. I.e the Chaining Vectors are created and stored 
indicating which two pixels in a certain surrounding may 
be connected to a Road Mark Edges with a certain 
probability. Since the Chaining Vectors vary with position 
(x,y) within the image, the conditional probabilities are 
computed for several discrete positions in the image called 
Tiles. This allows the usage of different primary 
interconnection directions based on the actual location 
within the window under concern. 

For each Tile, the set of Chaining Vectors is sorted in 
the order of their probability, thus search can start with the 
most probable vector which also has the greatest chance to 
find an other element pixel the same road marking. Figure 
4 illustrates the stored chaining vectors. Numbering is in 
order of decreasing probability. 

With the same approach it would also be possible to 
compute a consistent solution for the probability p(x,y) 
that a single pixel is on a road marking by using the Bayes 
theorem. A large linear equation system would have to be 
solved for this purpose. It should be mentioned that such 
an approach has an inherent relationship to relaxation 
labelling [10]. Because we are not mainly interested in 
computing the precise probabilities the available 
information is primarily utilized to speed up the search. 
Also our approach differs in using larger (e.g. 5*5) local 
surroundings. Thus, our approach can be interpreted as a 
rough but speed optimised approximation to p(x, y).  
 
5.2 Calculation of ACSD’s 

 
In order to describe measurements by vectors as proposed 
in chapter 1. the representation by lists of chained pixels is 
not very appropriate.  

Consequently, the road borders, which are up to now 
represented by pixel chains, are being intersected with a 
fixed line grid. The resulting intersections between Chains 
and grid deliver a position and an angle for each 
intersection point. All this is stored as the Abstract 
Complex Situation Description (ACSD). If the grid has i 

rows and j columns the ACSD has (i*j) elements. 
Assuming e.g. a grid of 10 columns and 20 rows and a 
processing speed of 40 ms for each Single Image, the 
needed storage space for an ACSD protocol amounts to 
40 KB per second or 2.4 MB per minute, what is quite 
moderate using conventional computers.  

Further details on parameter selection and the detailed 
treatment of the ACSD intersection points are described in 
[6] and [7]. 
 

6. SUBSYSTEM PATTERN MATCHING 

After the actual measurement m# has been condensed into 
a compact ACSD an appropriate behaviour has to be 
selected. The simplest approach is supervised learning by 
imitating a teacher. Thus the teacher has to show how to 
behave in a representative set of situations and the system 
protocols measurements mi and the behaviours pi of the 
teacher. 

Thus, a protocol has the structure: 
 
(m1, p1) … (mi, pi) …(mn, pn)   (3) 
 
with time as the index. 
 
The vector (mi, pi) in psychology would be called a 

sensor-motor-gestalt . It fuses sensor pattern and action 
pattern into one new entity. Hence, the selection of the 
appropriate behaviour can simply be described by gestalt 
completion: if m# represents the actual measurement, 
exactly the behaviour p# has to be executed which is 
stored in the protocol together with it. I.e. do what your 
teacher did in this situation. 

Unfortunately, identical measurement occur very 
seldom, especially if the input is as complex as an image. 
Therefore, a similarity measure has to be defined between 
the measurements. Such a measure was heuristically 
determined for the ACSD's ( [7]). 

The task of the Subsystem Pattern Matching consists 
thus in finding similar situations which have been 
recorded before. A similar task is to estimate the position 
within already driven road courses which is smoothly 
located in this subsystem. 

  
Retrieval of similar situations 

 
Given the different functional steps during the 

previous subsystem, the current situation is being 
described by its ACSD and not explicitly rebuild by a 
model of the vehicle or the road course. 

For any comparison between different ACSD’s a 
pattern recognition algorithm is needed. The chosen 
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pattern recognition algorithm used in this project is ANN 
[9], an advanced variant of the well known nearest 
neighbour algorithm. This algorithm has a O(n log m) 
characteristic compared to O(n • m) for the conventional 
nearest neighbour (with: m number of Patterns, n number 
of components of a pattern). The logarithmic order allows 
to search within approximate 10.000 Patterns with 100 
components in a few milliseconds. Without such a rapid 
similarity recognition method a real-time realisation of our 
approach would not be possible. The algorithm delivers a 
number of similar measurements. By choosing the most 
similar and executing the according behaviour the car can 
be controlled. 
 

7. SUBSYSTEM REINFORCEMENT LEARNING 
 

7.1 Position estimation 
 

As it can be seen in the results, it is possible to learn to 
drive with this simple approach but the resulting 
behaviour is in almost all cases inferior to that of the 
teacher. The reason consists in the similarity measure used 
to compare the measurements. Those measurements 
should be similar which require similar behaviour (the 
famous ethologist Nicolas Tinnbergen stated: an object is 
what needs a specific behaviour) but it is difficult to 
design such a similarity function from sparse 
measurements. 

But even if the similarity function would be perfectly 
optimised the behaviour would be suboptimal because the 
optimal behaviour, exactly fitting to the actual 
measurement, was never presented by the teacher before. 

Nevertheless, it is possible to drive by the simple 
approach because the function are obviously flat in state 
space. 

To improve the behaviour not only the best fitting 
measurement should be employed but all similar 
measurements should be used. This way, the sensitivity to 
the design of the similarity function is reduced because 
the behaviour is based on a larger region of the state space 
which can include differing behaviours. 

To become really independent of the more or less 
arbitrary design of the similarity function it is necessary to 
evaluate the success that is possible with a certain 
measurement. 

As stated in chapter 1. only very few situations (and 
the corresponding measurements) typically have directly a 
value to our learning system. 

Thus, the system must be able to cope with sparse and 
delayed rewards and punishments. On the other hand, if 
the system is able to assign values to each measurement 
the performance of the behaviour could surpass that of the 

teacher by goal oriented exploration. Reinforcement 
Learning offers one possible way, as shortly sketched in 
the this chapter. 

Some basic evaluations of situation must exist for 
internal rewarding and punishment. Because we want to 
optimise speed, time and position along the course should 
be known to the internal rewarding system. Extracting the 
position on the course directly from the visual input 
proved to be quite difficult.  But position provides two 
crucial pieces of information the system may utilise: 

 
-  the information on how the Situation Descriptions of the 

further road might look like (measurement 
expectation) 
 

-  the possibility for speed measurement as a basis for any 
performance determination 
 
Initially position was done by retrieving similar 

ACSD’s and further processing the search results. 
However, two major difficulties prevented any major 
success. Firstly, information of types of roads, e.g. left 
turn, look very often identical never mind at which 
position of the course they appear. Secondly, even 
ACSD’s of the same left curve looks often different due to 
a different horizontal offset at which the same curve is 
driven at different times. Even several attempts in 
conjunction with Kalman-filter-type approaches did not 
deliver reliable estimation of the current position within 
the road course. 

The second concept was not to use the ACSD’s as 
they are but to classify them into road types (e.g. left 
curve, right curve, etc.). The basic idea is that most road 
courses have a unique profile regarding the sequence of 
curves including the length of the distances in between. If 
such profiles are being created for the current part of the 
road course which is being driven it can be compared to 
any part of previously recorded profiles. The difficulty in 
this approach lies in the fact that the algorithm would 
need to be capable to classify road images into e.g. left 
curves, right curves, etc. This is in sharp contrast to the 
overall requirement to avoid any modelling, respectively 
avoid teaching as much as possible. 

Therefore the chosen concept is being based on 
comparing sequences of the Steering Commands. The 
Steering Commands are the commands to steer the vehicle 
to the left or right. The basic idea is that if a vehicle drives 
several times along the same course and therefore 
experiences the same sequence of curves and straight road 
section the sequences of Steering Command will be 
similar. Figure 5 shows such a sequence of lateral 
Steering Commands for a driven road section. The x-axis 
from left to right represents the time (overall approx. 3 
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minutes) while the y-axis represents the angle of the 
Steering Wheel. While the recording of the Steering 
Commands has been done at discrete time-intervals of 100 
ms, Figure 5 shows those Steering Commands averaged 
over 51 entries.  

 

8b_01

8b_02

8b_03

8b_04

8b_05

 
 
Figure 5: averaged Steering Command Protocol 

       (x-axis: time; y-axis angle of Steering Wheel) 
 
In general, it can be seen that the 5 displayed profiles 

of Steering Commands are very similar. The similarity 
exists regardless if the vehicle drove itself or was driven 
by the teacher. The small differences in details are caused 
due to differences of position and velocity but in all 5 
cases the Steering Commands follow the same overall 
profile. If now only a fraction of such profile is being 
taken (in specific the last n issued Steering Command of 
the currently driven course) and then compared to the 
profiles created before, similar road parts can be 
identified. In conjunction with Kalman-filter-type 
approaches as implemented before the current position on 
the road can be estimated. 

 
7.2 Reinforcement Learning concept 

 
The base requirement for this subsystem is to provide 
machine learning functionality within the overall System.  

In detail, the current subsystem needs to be able to 
optimise the quality of the Steering Commands over time. 
The paradigm of this research is to avoid implicit learning 
(e.g. by a neuronal network) as well as explicit modelling. 
Instead, the system of this research learns how to act in 
certain situations by gradual reinforcement and builds 
itself a set of Behavioural Patterns over time. A 
Behavioural Pattern (i.e. policy) is constituted by the 
recorded ACSD as explained before, the generated 
Steering Commands from that time and a factor indicating 
the success or failure of this combination. Thus, the 
System tries to learn explicitly the relation between 
certain states in measurement space and the reaction 
appropriate for the task. The system works in real-time 

with continuous feedback from the environment and any 
such Behavioural Pattern is being continuously optimised. 
A complete protocol of all the Behavioural Pattern 
generated during a round course delivers the knowledge 
base for further actions. 

The difficulty of optimising such Behavioural Pattern 
stems from the fact, that the success or failure of any 
generated Steering Command may not be calculated 
immediately. Almost no situation in the environment 
delivers directly a response about the value of the actual 
behaviour. Our optimisation criterion is the time needed to 
drive a specific route. I.e. we try to learn to drive as fast as 
possible. With this criterion in mind only after a 
completed round or time stop an evaluation of the 
Behavioural Pattern used in between can be performed. 
Such characteristic of delayed rewarding or punishing 
makes learning much more difficult. Speaking in general 
terms, the learning methodology being used for this 
research can be referred to as Reinforcement Learning.  
More Details on the Reinforcement Learning aspect of the 
system, can be found in [4][8]. 

 
8. EXPERIMENTAL RESULTS 

 
8.1 Pattern Matching 

 
Results on Intelligent Image Processing this subsystem 
may be found in [6][7]. 

The quality of the subsystem Pattern Matching can be 
shown twofold. Firstly, Figure 4 shows a series of images 
where the first image on the top is the incoming Single 
Image coming from the attached video camera. All 
remaining images are the ones classified by the Pattern 
Matching algorithm as similar ones. If considered that 
those classified images are only some out of a pattern 
database with several thousand record entries which 
contain all various types of images it can be seen that the 
recognition quality is quite good. 

 Even if they look very similar they stem from 
different runs and locations. 

From a pure image comparison point of view this 
might not be astonishing but in our case it needs to be 
noted that this has been achieved in addition to speed 
optimisation (search time for finding those 8 similar 
images out of a database of around 5.000 images can be 
done in less than 5 ms on any ordinary PC) and adaptation 
to road situations (the further course of the road to the left 
or right has higher priority on the classification of 
similarity than any objects on or next to the road which 
would distract ordinary similar-image-finding-
algorithms). 
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Incoming Singe Image

Classified as ‚similar‘

 
Figure 4: Result of Pattern Matching 

 
8.2 Driving by Pattern Matching 
 
In order to test first driving skills based on the pattern 
matching algorithm a pattern database with only 
appropriate steering commands for different situations has 
been build up. Such way, the Reinforcement Learning 
Process with it’s challenge to weigh the appropriateness 
of issued Steering Commands is skipped at the moment 
but the difficulties of retrieving similar situations in 
comparison to the actual one and therefore first driving by 
pattern matching can be tested. Such way several test runs 
have been performed. 

The tests then let the vehicle drive each time for 
approx. 5 minutes along a curvy and partial unknown road 
course. The results of such tests are listed below. 

 
Average results of tests: 
 

average frame frequency : 10  Hz 
No. of entries in pattern database: approx. 5.400 
Time of autonomous driving : 300 sec 
Calculated Steering Commands: 3000 (10 per second) 
Number of major errors (road course left completely): 1 
Number of errors (crash barrier scratched): 4 

If it is assumed that at each conducted error is the 
result of around 10 steering commands (the actual one and 
the previous 9 ones) the failure rate amounts to (5 · 10) / 

3000 equals 1.6 %. Noting, that the autonomous driving is 
purely done on pattern matching since both 
Reinforcement Learning as well as intelligent calculation 
of Steering Commands are still outstanding, the results 
shown above are promising. 

 
8.3 Reinforcement Learning 

 
Prior to any combination of Reinforcement Learning (RL) 
with Pattern Matching methods, several RL methods with 
each time different parameter sets got studied before. In 
order to therefore have RL separated from the rest of the 
research, a virtual Race Track simulator got implemented 
which automatically feeds environmental input to a 
simulated vehicle and also receives and processes steering 
commands. Even though both environment and vehicle 
are being rebuild in a rather simple manner, the kind of 
interfaces to and from the RL system are very similar to 
the interfaces of the main research system and it’s RL 
system.  

Those interfaces include first of all a situation 
description, describing the situation the vehicle is 
currently in which is being calculated by the simulator and 
forwarded to the RL system. The output from the RL 
system are the steering commands which are being 
forwarded to the simulator. Based on those steering 
commands, a new environmental situation description is 
being calculated and again forwarded to the RL system. 
Lastly, rewards are being calculated by the simulator in 
parallel and forwarded to the RL system: a small 
punishment for simply driving along the course (usage of 
resources), a big punishment for bumping or scratching 
any obstacle and a big reward for reaching a defined goal. 
With those interfaces the RL system has been established 
according to 5.1 The final implementation of 
reinforcement learning is outstanding and in the future it 
might be interesting to be able to learn the behaviour with 
dynamic obstacle i.e. other cars on the track to be able to 
do real racing contest and not only to compare the round 
times. 

 
9. SUMMARY 

 
In the paper the actual state of a System is presented that 
is aimed to LEARN driving autonomously different 
vehicles on different courses exclusively from visual 
input. 

The Subsystem INTELLIGENT IMAGE 
PROCESSING allows to locate the Road Mark Edges of 
each Single Image. A trained search algorithm, which is 
inspired by spatial gestalt completion allows optimal 
search speed and high recognition rate and consequently 
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efficiently converts Road Mark Edges into Abstract 
Complete Situation Descriptions (ACSD’s). 

The Subsystem PATTERN MATCHING successfully 
retrieves similar situations to the current one based on a 
pattern matching algorithm. This algorithm may be 
interpreted as sensor-motor gestalt completion. 

The Subsystem REINFORCEMENT LEARNING is 
still under implementation. However, a simple approach 
implemented so far allows already autonomous driving on 
a learning-by-knowledge-transfer basis promising further 
positive results in the area of autonomous driving based 
our new paradigm.  
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