
BEHAVIOUR LEARNING BY VISUAL GESTALT COMPLETION

Klaus-Dieter Kuhnert, Michael Krödel

University of Siegen, Institute for Real-Time-Learning Systems,
Hölderlinstrasse 3, D-57068 Siegen / Germany

kuhnert@fb12.uni-siegen.de

ABSTRACT

First, the paper presents some basic considerations of how
specific behaviours are learned from complex sensor
input. These thoughts are exemplified by a system that is
able to learn to drive different cars in different
environments exclusively by vision. The basic idea that
learning is nearly always the acquisition of task-relevant
probabilities is detailed and a general method how this
idea may be implemented for the different subtasks is
proposed. Neither explicit modelling nor soft-computing
methods have been employed for this task. Our approach
is primarily memory based and tries to approximate the
probability density functions that rule the behaviour of
task learning systems. The general paradigm of the
approach is that at several levels mainly pattern matching
techniques are necessary. Finally, some details of the
implementation and results on learning visual autonomous
driving are given.

1. BASIC IDEAS OF SYSTEM MODEL

Fixed patterns constitute a gestalt. This term has a quite
long history in psychology and several gestalt-laws have
been discovered. Basically the gestalt constitutes a
mechanism to condensate different stimuli, which may be
completely unrelated at a first glace, into a new entity: just
the gestalt. From this formulation the reader may already
suspect the relation to visual learning, but first we want to
prepare the necessary ingredients of the gestalt endowing
mechanism.

Some states s* of the environment of an organism are
of real importance for its survival and some are not.
Therefore every system that has a goal must try to
protocol and evaluate the relevant states and the
conditional probabilities p(s*/s#). I.e. the probability a
current state s# will generate such an important state s*;
possibly over a chain of other states.

These probabilities deliver the objective basis for
decisions the system has to take. In most cases a state s# is

not directly accessible but can be associated with a
measurement pattern m# e.g. an image.

As common in control theory in the following we will
use vectors for states s and measurements m.

For a rather large class of tasks with practical
relevance it is nearly always possible to eliminate time
dependencies by introducing new components to the state
vector and thus use markov process as the description
framework. It is easily seen that this description of the
interaction between system and environment yields of
markov random process with hidden states.

In analogy with leaning theory we call the different
possible actions that have to be chosen in a state a policy
p.

Fortunately for a lot of tasks it can be assumed that the
policy over state space is steady and "flat" i.e. small
changes in state create no catastrophic changes in the
appropriate policy. At least such instable regions in state
space should be restricted to few places.

By this assumption it is possible to use methods from
steady function in combination with the markov process
description. I.e. at least locally the discrete state
measurements can be steadily approximated and the
policy can be optimised by a local approximation
function.

Also it is common knowledge that in organisms, due
to the slow processing elements only few processing steps
between recognition of a pattern and a reactive action are
possible. Therefore one basic consideration in our system
is to have the shortest possible connection between
recognition and behaviour. Due to the same argument
similar approaches have been tried with neural networks
(e.g. ALVIN [1]). There the neural net was used as an
approximating function for the policy and implicitly the
same assumptions have been made as stated above.

To reach greater transparency of the internal system
function and to acquire the ability to fine tune the systems
parameters we decided to use primarily a memory based
approach. An additional motivation was that in organisms
reactive behaviours could also be mainly memory based
(admittedly on a parallel distributed hardware). Therefore,
our approach tries to implement the approximation of the
state and the policy function by adapted data structures.

 20

mailto:kuhnert@pd.et-inf.uni-siegen.de

Learning in this framework means to prepare the
appropriate data structures and of course mechanisms to
fill and access them quickly but also to weight and
memorize the appropriateness of behaviour at a certain
situation s#.

To force flexibility into the system as little task
specific knowledge as reasonable and possible should be
build in.

Thus, our Approach tries to rely as less as possible on
rigidly programmed models of task specific knowledge to
guarantee flexibility and expandability.

Learning of mentioned conditional probabilities may
be interpreted in psychological terms as completion of
patterns. This way the well introduced methods of pattern
recognition may be employed. To the gestalt principle
which was thoroughly investigated in psychology there is
fundamentally no difference between patterns distributed
in space or in time. Thus, by gestalt completion also
prediction is possible generating the ability to judge about
unmeasured parts of the patterns and their attached states.

Also it has to be stated that within one state
conditional probabilities exist which allow to recognise
the state by only a part of its complete information. Thus
the gestalt can be completed from the features of a
situation.

2. IMPLEMENTATION OF THE BASIC IDEAS

For a specific application the general consideration
sketched above can be implemented in three steps:

- identify the task relevant conditional probabilities
- approximate their distribution by discrete function
- interpolate locally to improve the precision

The first question is: it is possible by sheer pattern

recognition to find the appropriate state and behaviour?
Additionally, it is clear that such a system needs a large
number of patterns (> 5000).

3. SYSTEM OVERVIEW

As an application to demonstrate the basic ideas we have
chosen the task to drive a car with unknown dynamics on
an basically unknown track by visual input. Vision is very
appropriate if a non trivial relation between measurement
m# and state s# should be investigated. Due to a number
of effects like perspective projection, occlusion,
illumination etc., the relation is very non-linear and
complex.

So, the system is confronted to the situation a human
is in when he starts to learn to play a computer game of

car racing. In specific, in a graphical simulation the
system is required to steer an autonomous car along a
curvy and hilly road course with no intersections and no
other vehicles respectively obstacles on the road but with
the strict requirement to self-improve driving behaviour
based on delayed, self-created rewards or punishments.

Figure 1: Wire frame model of an example track

The goal is not to follow a specific trajectory as it

would be necessary in normal traffic but to drive as fast as
possible. I.e. to learn a policy that optimises the
longitudinal and lateral control for time optimal motion.
Due to the fact that the dynamics of the vehicle are
unknown standard methods from control theory are not
applicable.

Figure 2: Example Image

The task may be divided into three subtasks as shown

in figure 3: INTELLIGENT IMAGE PROCESSING
(IIP), PATTERN MATCHING (PM) and
REINFORCEMENT LEARNING (RL).

Handling a video stream in real-time urges the need to
reduce the bulk of information. Because we want to build

 21

a flexible system this reduction mechanism should not be
hardwired but able to learn the task relevant features at
least to a certain degree. The subsystem INTELLIGENT
IMAGE PROCESSING (IIP) is responsible for processing
the incoming video stream and the real-time calculation of
a reduced parametric description of every single image
called Abstract Complete Situation Descriptions
(ACSD’s).

Figure 3: Structure of the system

From all the possible actions p in a situation s# at least

one has to be selected for execution. Thus, the system has
to learn to find the appropriate p# to a measurement m#.
This task is performed by the Subsystem PATTERN
MATCHING (PM). It has the task to retrieve similar
measurements m in comparison to the actual measurement
m# from the camera. A large number of previously
recorded situations, respectively their ACSD’s, is being
stored in a pattern database which is being accessed by the
subsystem PATTERN MATCHING in two ways: Firstly,
the Subsystem PM scans the pattern database for similar
situations in comparison to the actual one; secondly, it
also stores the ACSD of the actual situation together with
the actual steering commands for further reference.

Because not only one measurement m might be similar
to the actual one (m#) and thus several behaviours might

look adequate a mechanism is needed to optimise the
policy and to compute behaviours not previously
recorded.

The subsystem REINFORCEMENT LEARING (RL)
is responsible for determining a suitable behaviour in
terms of steering commands for the current situation. This
determination is based on the actual situation in
conjunction with previously recorded, similar situations

and their issued steering commands. For such task it is
crucial to rate the appropriateness of any previously
issued steering command, otherwise optimisation of
behaviour would not be possible. Therefore, this
subsystem is also responsible for weighting the success,
respectively the appropriateness of any calculated steering
command and also copes with the difficulty that such
appropriateness can often only be determined after a quite
long time delay.

Behaviour Interpolation
and optimisation

Record
& StorePattern

Database

Steering Commands

Calc. of Abstract Complete Situation Descriptions (ACSD's)

Retrieval of
similar situations

Steering Wheel,
Brake and Accelerator

Videocamera

Reinforcement
Learning Pattern Matching

Intelligent Image
Processing (IIP)

 22

4. RELATED WORK

Up to now the visual control of systems for autonomous
vehicle driving with learning components have been
implemented in several ways. [1] describes a short direct
connection between image processing and one soft
computing learning method using a neural network. This
approach provides good results but only for as long as
input pictures of the scene are quite similar to the training
pattern. In several variations, neural networks for this task
have been used.

A completely different approach is being followed by
using explicit modelling. [2] describes an early success
with international attention of a vehicle system using a
real-time vision system BVV2 [3]. Further developments
stayed with the aspect of modelling, thus always in need
for loading the system with many parameters for the
modelling process.

The presented approach is a study of avoiding both
neuronal networks or similar approximation methods as
well as explicit models. It gathers all information purely
from incoming images. It derives a situation description of
the scene and develops a driving behaviour by a
optimisation technique. With reference to the need for
machine learning capabilities the current research follows
the basic principles of Reinforcement Learning (e.g.[5])
and focuses on a way of combining such area of research
with pattern recognition algorithms.

5. SUBSYSTEM IMAGE PROCESSING

A single connected camera is delivering the video stream
from the environment. For each single image an abstract
complete situation description (ACSD) of the situation of
the vehicle has to be computed. Such conversion is
basically a reduction process and in addition to the
requirement of reducing the streaming video information
to the relevant parts, the calculation of such ACSD’s has
to be very quick. Therefore, this subsystem combines
traditional edge finding operators in order to locate
contrast differences with a new technique of Bayes
prediction in order to predict whether a contrast difference
results from a road mark edge.

During the runtime of the system, a first pass scans for
horizontal colour contrast differences by a conventional
filter technique and memorises all locations where the
colour values of two neighbouring pixels from the Single
Image represent a possible candidate of a Road Mark
Edge or lane border.

In a second pass, those candidates are fused into
higher order objects i.e. road marks by chaining them
together. The chaining is supported by the statistics which

indicate the expected orientation of the road course in this
location within the Single Image. If a chain can be
established and fulfils minimum requirements on length
and number of interconnection points in between, the
whole chain is being stored as a confirmed representation
of a Road Mark Edge. Otherwise, the considered
candidates of Road Mark Edges are being rejected.

5.1 Usage of pre-build knowledge on road courses

As already stated the knowledge of the appearing of road
mark edges or lane borders is not hardwired into the
system. The knowledge of the typical shape of marking
lines has first to be learned. After gathering this
knowledge it can stabilize and speed up the search
process.

If we assume a certain pixel to be on the road mark we
want to know the probabilities of the surrounding pixel
also to be on the road mark. Additionally for the search it
would be advantageous to know the pixel position that
lies on the road mark with the highest probability. As the
reader may recognise, we just applied the basic
consideration to the specific problem here.

I.e. we have to learn the conditional probability
density function:

)|(,, jyixyx PPf ++ (1)

with:

yxP , is the event that the pixel at (x , y) is on a Road

Mark Edge
 is the event that the pixel at (x + i , y + j) is

on a Road Mark Edge.
jyixP ++ ,

This function is quite smooth in the near region of the

road image but depends obviously on (x, y). It also
depends on several other factors like the actual course and
vehicle dynamics but these influences are assumed to be
stable and representative over the learning phase.

 To reach a practical implementation the function is
approximated by a discretely sampled version:

p(Px,y | Px+i, y+j) (2)

 Therefore, the Single Image is separated into Tiles

and a separate function px,y is estimated for each Tile. One
connection between P x, y and P x + i, y + j is called a
Chaining Vector. So, this function can not only be utilised
for describing the statistical properties of Road Mark
Edges but also for defining a search strategy, i.e. all the

 23

Chaining vectors belonging to the position (x, y) can be
searched in the order of their probability thus optimising
the search speed. The grid size i, j and their maximum
value i.e. the size of the context that is considered are the
most important parameters of the method.

If we turn our argument to psychological terms the
method performs a spatial gestalt completion: by knowing
part of the pattern the rest of it can be derived more stable
and rapidly.

During learning, in a large number of different Single
Images of representative road scenes the relevant borders
are marked by a human teacher. Form the labelled images
the conditional probabilities according to (2) are
computed. I.e the Chaining Vectors are created and stored
indicating which two pixels in a certain surrounding may
be connected to a Road Mark Edges with a certain
probability. Since the Chaining Vectors vary with position
(x,y) within the image, the conditional probabilities are
computed for several discrete positions in the image called
Tiles. This allows the usage of different primary
interconnection directions based on the actual location
within the window under concern.

For each Tile, the set of Chaining Vectors is sorted in
the order of their probability, thus search can start with the
most probable vector which also has the greatest chance to
find an other element pixel the same road marking. Figure
4 illustrates the stored chaining vectors. Numbering is in
order of decreasing probability.

With the same approach it would also be possible to
compute a consistent solution for the probability p(x,y)
that a single pixel is on a road marking by using the Bayes
theorem. A large linear equation system would have to be
solved for this purpose. It should be mentioned that such
an approach has an inherent relationship to relaxation
labelling [10]. Because we are not mainly interested in
computing the precise probabilities the available
information is primarily utilized to speed up the search.
Also our approach differs in using larger (e.g. 5*5) local
surroundings. Thus, our approach can be interpreted as a
rough but speed optimised approximation to p(x, y).

5.2 Calculation of ACSD’s

In order to describe measurements by vectors as proposed
in chapter 1. the representation by lists of chained pixels is
not very appropriate.

Consequently, the road borders, which are up to now
represented by pixel chains, are being intersected with a
fixed line grid. The resulting intersections between Chains
and grid deliver a position and an angle for each
intersection point. All this is stored as the Abstract
Complex Situation Description (ACSD). If the grid has i

rows and j columns the ACSD has (i*j) elements.
Assuming e.g. a grid of 10 columns and 20 rows and a
processing speed of 40 ms for each Single Image, the
needed storage space for an ACSD protocol amounts to
40 KB per second or 2.4 MB per minute, what is quite
moderate using conventional computers.

Further details on parameter selection and the detailed
treatment of the ACSD intersection points are described in
[6] and [7].

6. SUBSYSTEM PATTERN MATCHING

After the actual measurement m# has been condensed into
a compact ACSD an appropriate behaviour has to be
selected. The simplest approach is supervised learning by
imitating a teacher. Thus the teacher has to show how to
behave in a representative set of situations and the system
protocols measurements mi and the behaviours pi of the
teacher.

Thus, a protocol has the structure:

(m1, p1) … (mi, pi) …(mn, pn) (3)

with time as the index.

The vector (mi, pi) in psychology would be called a

sensor-motor-gestalt . It fuses sensor pattern and action
pattern into one new entity. Hence, the selection of the
appropriate behaviour can simply be described by gestalt
completion: if m# represents the actual measurement,
exactly the behaviour p# has to be executed which is
stored in the protocol together with it. I.e. do what your
teacher did in this situation.

Unfortunately, identical measurement occur very
seldom, especially if the input is as complex as an image.
Therefore, a similarity measure has to be defined between
the measurements. Such a measure was heuristically
determined for the ACSD's ([7]).

The task of the Subsystem Pattern Matching consists
thus in finding similar situations which have been
recorded before. A similar task is to estimate the position
within already driven road courses which is smoothly
located in this subsystem.

Retrieval of similar situations

Given the different functional steps during the

previous subsystem, the current situation is being
described by its ACSD and not explicitly rebuild by a
model of the vehicle or the road course.

For any comparison between different ACSD’s a
pattern recognition algorithm is needed. The chosen

 24

pattern recognition algorithm used in this project is ANN
[9], an advanced variant of the well known nearest
neighbour algorithm. This algorithm has a O(n log m)
characteristic compared to O(n • m) for the conventional
nearest neighbour (with: m number of Patterns, n number
of components of a pattern). The logarithmic order allows
to search within approximate 10.000 Patterns with 100
components in a few milliseconds. Without such a rapid
similarity recognition method a real-time realisation of our
approach would not be possible. The algorithm delivers a
number of similar measurements. By choosing the most
similar and executing the according behaviour the car can
be controlled.

7. SUBSYSTEM REINFORCEMENT LEARNING

7.1 Position estimation

As it can be seen in the results, it is possible to learn to
drive with this simple approach but the resulting
behaviour is in almost all cases inferior to that of the
teacher. The reason consists in the similarity measure used
to compare the measurements. Those measurements
should be similar which require similar behaviour (the
famous ethologist Nicolas Tinnbergen stated: an object is
what needs a specific behaviour) but it is difficult to
design such a similarity function from sparse
measurements.

But even if the similarity function would be perfectly
optimised the behaviour would be suboptimal because the
optimal behaviour, exactly fitting to the actual
measurement, was never presented by the teacher before.

Nevertheless, it is possible to drive by the simple
approach because the function are obviously flat in state
space.

To improve the behaviour not only the best fitting
measurement should be employed but all similar
measurements should be used. This way, the sensitivity to
the design of the similarity function is reduced because
the behaviour is based on a larger region of the state space
which can include differing behaviours.

To become really independent of the more or less
arbitrary design of the similarity function it is necessary to
evaluate the success that is possible with a certain
measurement.

As stated in chapter 1. only very few situations (and
the corresponding measurements) typically have directly a
value to our learning system.

Thus, the system must be able to cope with sparse and
delayed rewards and punishments. On the other hand, if
the system is able to assign values to each measurement
the performance of the behaviour could surpass that of the

teacher by goal oriented exploration. Reinforcement
Learning offers one possible way, as shortly sketched in
the this chapter.

Some basic evaluations of situation must exist for
internal rewarding and punishment. Because we want to
optimise speed, time and position along the course should
be known to the internal rewarding system. Extracting the
position on the course directly from the visual input
proved to be quite difficult. But position provides two
crucial pieces of information the system may utilise:

- the information on how the Situation Descriptions of the

further road might look like (measurement
expectation)

- the possibility for speed measurement as a basis for any
performance determination

Initially position was done by retrieving similar

ACSD’s and further processing the search results.
However, two major difficulties prevented any major
success. Firstly, information of types of roads, e.g. left
turn, look very often identical never mind at which
position of the course they appear. Secondly, even
ACSD’s of the same left curve looks often different due to
a different horizontal offset at which the same curve is
driven at different times. Even several attempts in
conjunction with Kalman-filter-type approaches did not
deliver reliable estimation of the current position within
the road course.

The second concept was not to use the ACSD’s as
they are but to classify them into road types (e.g. left
curve, right curve, etc.). The basic idea is that most road
courses have a unique profile regarding the sequence of
curves including the length of the distances in between. If
such profiles are being created for the current part of the
road course which is being driven it can be compared to
any part of previously recorded profiles. The difficulty in
this approach lies in the fact that the algorithm would
need to be capable to classify road images into e.g. left
curves, right curves, etc. This is in sharp contrast to the
overall requirement to avoid any modelling, respectively
avoid teaching as much as possible.

Therefore the chosen concept is being based on
comparing sequences of the Steering Commands. The
Steering Commands are the commands to steer the vehicle
to the left or right. The basic idea is that if a vehicle drives
several times along the same course and therefore
experiences the same sequence of curves and straight road
section the sequences of Steering Command will be
similar. Figure 5 shows such a sequence of lateral
Steering Commands for a driven road section. The x-axis
from left to right represents the time (overall approx. 3

 25

minutes) while the y-axis represents the angle of the
Steering Wheel. While the recording of the Steering
Commands has been done at discrete time-intervals of 100
ms, Figure 5 shows those Steering Commands averaged
over 51 entries.

8b_01

8b_02

8b_03

8b_04

8b_05

Figure 5: averaged Steering Command Protocol

 (x-axis: time; y-axis angle of Steering Wheel)

In general, it can be seen that the 5 displayed profiles

of Steering Commands are very similar. The similarity
exists regardless if the vehicle drove itself or was driven
by the teacher. The small differences in details are caused
due to differences of position and velocity but in all 5
cases the Steering Commands follow the same overall
profile. If now only a fraction of such profile is being
taken (in specific the last n issued Steering Command of
the currently driven course) and then compared to the
profiles created before, similar road parts can be
identified. In conjunction with Kalman-filter-type
approaches as implemented before the current position on
the road can be estimated.

7.2 Reinforcement Learning concept

The base requirement for this subsystem is to provide
machine learning functionality within the overall System.

In detail, the current subsystem needs to be able to
optimise the quality of the Steering Commands over time.
The paradigm of this research is to avoid implicit learning
(e.g. by a neuronal network) as well as explicit modelling.
Instead, the system of this research learns how to act in
certain situations by gradual reinforcement and builds
itself a set of Behavioural Patterns over time. A
Behavioural Pattern (i.e. policy) is constituted by the
recorded ACSD as explained before, the generated
Steering Commands from that time and a factor indicating
the success or failure of this combination. Thus, the
System tries to learn explicitly the relation between
certain states in measurement space and the reaction
appropriate for the task. The system works in real-time

with continuous feedback from the environment and any
such Behavioural Pattern is being continuously optimised.
A complete protocol of all the Behavioural Pattern
generated during a round course delivers the knowledge
base for further actions.

The difficulty of optimising such Behavioural Pattern
stems from the fact, that the success or failure of any
generated Steering Command may not be calculated
immediately. Almost no situation in the environment
delivers directly a response about the value of the actual
behaviour. Our optimisation criterion is the time needed to
drive a specific route. I.e. we try to learn to drive as fast as
possible. With this criterion in mind only after a
completed round or time stop an evaluation of the
Behavioural Pattern used in between can be performed.
Such characteristic of delayed rewarding or punishing
makes learning much more difficult. Speaking in general
terms, the learning methodology being used for this
research can be referred to as Reinforcement Learning.
More Details on the Reinforcement Learning aspect of the
system, can be found in [4][8].

8. EXPERIMENTAL RESULTS

8.1 Pattern Matching

Results on Intelligent Image Processing this subsystem
may be found in [6][7].

The quality of the subsystem Pattern Matching can be
shown twofold. Firstly, Figure 4 shows a series of images
where the first image on the top is the incoming Single
Image coming from the attached video camera. All
remaining images are the ones classified by the Pattern
Matching algorithm as similar ones. If considered that
those classified images are only some out of a pattern
database with several thousand record entries which
contain all various types of images it can be seen that the
recognition quality is quite good.

 Even if they look very similar they stem from
different runs and locations.

From a pure image comparison point of view this
might not be astonishing but in our case it needs to be
noted that this has been achieved in addition to speed
optimisation (search time for finding those 8 similar
images out of a database of around 5.000 images can be
done in less than 5 ms on any ordinary PC) and adaptation
to road situations (the further course of the road to the left
or right has higher priority on the classification of
similarity than any objects on or next to the road which
would distract ordinary similar-image-finding-
algorithms).

 26

Incoming Singe Image

Classified as ‚similar‘

Figure 4: Result of Pattern Matching

8.2 Driving by Pattern Matching

In order to test first driving skills based on the pattern
matching algorithm a pattern database with only
appropriate steering commands for different situations has
been build up. Such way, the Reinforcement Learning
Process with it’s challenge to weigh the appropriateness
of issued Steering Commands is skipped at the moment
but the difficulties of retrieving similar situations in
comparison to the actual one and therefore first driving by
pattern matching can be tested. Such way several test runs
have been performed.

The tests then let the vehicle drive each time for
approx. 5 minutes along a curvy and partial unknown road
course. The results of such tests are listed below.

Average results of tests:

average frame frequency : 10 Hz
No. of entries in pattern database: approx. 5.400
Time of autonomous driving : 300 sec
Calculated Steering Commands: 3000 (10 per second)
Number of major errors (road course left completely): 1
Number of errors (crash barrier scratched): 4

If it is assumed that at each conducted error is the
result of around 10 steering commands (the actual one and
the previous 9 ones) the failure rate amounts to (5 · 10) /

3000 equals 1.6 %. Noting, that the autonomous driving is
purely done on pattern matching since both
Reinforcement Learning as well as intelligent calculation
of Steering Commands are still outstanding, the results
shown above are promising.

8.3 Reinforcement Learning

Prior to any combination of Reinforcement Learning (RL)
with Pattern Matching methods, several RL methods with
each time different parameter sets got studied before. In
order to therefore have RL separated from the rest of the
research, a virtual Race Track simulator got implemented
which automatically feeds environmental input to a
simulated vehicle and also receives and processes steering
commands. Even though both environment and vehicle
are being rebuild in a rather simple manner, the kind of
interfaces to and from the RL system are very similar to
the interfaces of the main research system and it’s RL
system.

Those interfaces include first of all a situation
description, describing the situation the vehicle is
currently in which is being calculated by the simulator and
forwarded to the RL system. The output from the RL
system are the steering commands which are being
forwarded to the simulator. Based on those steering
commands, a new environmental situation description is
being calculated and again forwarded to the RL system.
Lastly, rewards are being calculated by the simulator in
parallel and forwarded to the RL system: a small
punishment for simply driving along the course (usage of
resources), a big punishment for bumping or scratching
any obstacle and a big reward for reaching a defined goal.
With those interfaces the RL system has been established
according to 5.1 The final implementation of
reinforcement learning is outstanding and in the future it
might be interesting to be able to learn the behaviour with
dynamic obstacle i.e. other cars on the track to be able to
do real racing contest and not only to compare the round
times.

9. SUMMARY

In the paper the actual state of a System is presented that
is aimed to LEARN driving autonomously different
vehicles on different courses exclusively from visual
input.

The Subsystem INTELLIGENT IMAGE
PROCESSING allows to locate the Road Mark Edges of
each Single Image. A trained search algorithm, which is
inspired by spatial gestalt completion allows optimal
search speed and high recognition rate and consequently

 27

 28

efficiently converts Road Mark Edges into Abstract
Complete Situation Descriptions (ACSD’s).

The Subsystem PATTERN MATCHING successfully
retrieves similar situations to the current one based on a
pattern matching algorithm. This algorithm may be
interpreted as sensor-motor gestalt completion.

The Subsystem REINFORCEMENT LEARNING is
still under implementation. However, a simple approach
implemented so far allows already autonomous driving on
a learning-by-knowledge-transfer basis promising further
positive results in the area of autonomous driving based
our new paradigm.

10. REFERENCES

[1] D. A. Pommerleau, “Efficient Training of Artificial Neural
Networks for Autonomous Navigation”, Neural Computation 3,
1991

 [2] E.D.Dickmanns, A.Zapp, “Autonomous High Speed Road
Vehicle Guidance by Computer Vision”, Preprints of the 10th
World Congress on Automatic Control, Vol.4, International
Federation of Automatic Control, Munich, Germany, July 27-31,
1987

[3] K.-D.-Kuhnert, “A Vision System for Real Time Road and
Object Recognition for Vehicle Guidance”, Proc. Mobile
Robots, Oct 30-31, 1986, Cambridge, Massachusetts, Society of
Photo-Optical Instrumentation Engineers, SPIE Volume 727

[4] K.-D. Kuhnert, M. Krödel, “Autonomous Driving by
Pattern Matching and Reinforcement Learning”, Proc. of
the IntrnationalColloquium onAutonomous and Mobile
Systems, June 25-26, 2002, Magdeburg Germany, pp26-
31.
[5] R. Sutton, A. G. Barto, Reinforcement Learning: An
introduction, MIT-Press, 2000, Cambridge (USA)

 [6] M. Krödel, K.-D. Kuhnert, “Towards a Learning
Autonomous Driver System”, IEEE International Conference on
Industrial Electronics, Control and Instrumentation, October 22-
28, 2000, Nagoya, Japan

[7] M. Krödel, K.-D. Kuhnert, “Autonomous Driving through
Intelligent Image Processing and Machine Learning”, Int’l
Conference on Computational Intelligence, October 1-3,
Dortmund, Germany

[8] M. Krödel, K.-D. Kuhnert, “Pattern Matching as the Nucleus
for either Autonomous Driving or Drive Assistance Systems”,
IEEE Intelligent Vehicle Symposium, June 17-21, 2002,
Versailles, France.

[9] J. Langenhangen, “Nearly nearest Neighbour search with
principal components”, Thesis, Siegen, 2001

[10] S. W. Zucker, “Relaxation labeling: 25 years and still
iterating”, in Foundations of Image Understanding, L. S. Davis
(ed.), Kluwer Academic Publ, Boston, 2001, 289 - 322.

