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ABSTRACT

Monitoring and controlling the driver’s guidance by analyz-
ing the rotation impressed to the steering-wheel can be a
very important task in order to improve safety. This pa-
per proposes a general-purpose method to track the steering
wheel’s absolute angle by using a single camera vision sys-
tem mounted inside the car. The absolute angle is computed
by means of the accumulation of inter-frame relative rota-
tions and the error propagation is prevented with an align-
ment process. The approach is based on the modeling of
the motion of the steering wheel, as it appears perspectively
distorted by the point of view of the un-calibrated camera.
We modified the Lucas-Kanade method for an approxima-
tively rotational motion model in order to provide the detec-
tion and tracking of significant features on the wheel. The
experimental results are compared with ground-truthed data
obtained with different types of sensors.

1. INTRODUCTION

Amongst vehicular technologies, those dedicated to safety
play a more and more important role nowadays. In particu-
lar, monitoring and controlling the driver’s guidance in real-
time can be dramatically important. To this aim, real-time
computation of the rotation angle of a car’s steering-wheel
must be provided in order to achieve relevant information
about the driver’s guidance.

Moreover, real-time analysis of videos acquired from a
camera mounted on a moving vehicle (namely camera-car)
can be very attractive due to the large amount of visual in-
formation that can be extracted both inside the vehicle (to
assess the driver conditions and control the environment to
prevent from dangerous situations) and outside the vehicle
(for automatic guidance purposes, as vehicle control and ob-
stacle avoidance). In the first context, new research activi-
ties are devoted to the assessment of the driver’s posture for
smart air bag deployment, or to the acquisition of driving
information. Another example is the use of cameras to de-
tect potentially dangerous situations in which the driver is

distracted (e.g., because he responds to a cell phone while
is driving).

In this framework an interesting problem is the detec-
tion of the steering-wheel rotation angle. The possibility to
compute this angle in real-time can be exploited to provide
a feedback to the driver in terms of virtual (or augmented)
reality, or to support an automatic guidance system, or to an-
alyze the style of the driving by observing how the steering
wheel’s angle changes along time.

Theoretically, the same information could be obtained
by other types of sensors, such as electro-mechanical sen-
sors, potentiometers, and so on, applied to the steering wheel.
The advantages of a vision-based system are basically three:
first, the other types of sensors require a more invasive in-
stallation, and, moreover, cameras can be easily moved from
one vehicle to another; second, electronic sensors can not
work on pre-registered data, i.e. they can only obtain re-
sults on the moment, in real-time; third, the amount and the
semantics of the information provided by a camera are more
than any other type of “blind” sensor. As an example, refer
to Fig. 1(b) where a special steering wheel equipped with
potentiometers is used to acquire ground-truthed data.

According with these considerations, we propose a general-
purpose approach to detect the rotation angle of the steering
wheel in a reliable manner. The method can be used to track
the trajectory of the car by tracking the rotation angle frame
by frame.

In the rest of the paper, we make the following assump-
tions:

1. instrumentation of the wheel must be avoided, and
thus no artificial reference points have been settled;

2. the environment is not structured and heavily clut-
tered; in particular, the driver’s head often occludes
the steering-wheel and shadows and light beams can
suddenly change the luminance (Figg. 1(a) and 1(b))

3. the image quality is affected by burst noise, carried
by vibrations and jumps.
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The paper is structured as follows: section 2 reports the
related works present in the literature, though they are few.
Section 3 describes the solution proposed by detailing the
wheel’s motion model and the method used to compute the
angle. Section 4 shows the experimental results obtained by
comparing them with the telemetric data; eventually, con-
clusions are reported in section 5.

2. RELATED WORKS

One possible approach to measure the rotation angle in the
case the object shape is a-priori known, is to generate every
possible rotation and evaluate its matching with the current
frame. However, in this application, the object shape can-
not be considered known a priori, due to the large amount
of different shapes to be taken into consideration. In addi-
tion, substantial parts of the target object might be occluded
in the current frame and the matching consequently fail. A
solution is offered by a feature tracking approach: what hu-
mans actually do to perceive rotation motion of a steering-
wheel is basically to follow some recognizable points of the
wheel or follow the motion of the driver’s hands, which of-
ten move rigidly with the wheel itself. In the same way,
a computer vision approach can perform automated feature
detection and tracking to measure the rotation angle.

Many research works address the problem of detecting
the motion of rigid objects: often the motion is assumed as a
translational model (for instance the Lucas-Kanade method
and derived approaches [1]); more generally, an affine model
in the 3D space is assumed: this approach is very gen-
eral and very complex and therefore highly time consum-
ing. Thus, is often used as a first qualitative step to detect
motion in videos [2]. In this work, instead, we start from
a constrained motion model since we aim at detecting and
tracking the rotation of a rigid object around a fixed point.
A little effort in the research community has been done to
study this type of problems. However, as for similar prob-
lems, we can subdivide the approaches in two main classes:
based on the object-model and on the motion-model.

The first class assumes that the model of the object to be
tracked is known. Consequently, a shape recognition algo-
rithm can be used to localize the object (and its orientation)
in each frame. These methods are usually based on template
or shape detection approaches such as the Hough transform
(HT), as the basic HT for parametric curves or the gener-
alized Hough Transform for general templates. The second
class is instead based on the model of the motion of the ob-
ject or part of it.

The first approach is applicable only if the object is a-
priori known. Thus, for instance, it must be tuned and changed
for each possible steering wheel model. The second ap-
proach, instead, requires a reliable techniques to detect mo-
tion or optical flow for each image pixel, or calls for a first

robust stage for extracting significant points or features from
each frame, in order to compute their motion.

3. THE PROPOSED APPROACH

Our approach belongs to the class of motion-based tech-
niques. Consequently, it can only compute the displacement
of the points in a frame w.r.t. the points of the previous
frame: thus, it suffers of the drawback of computing the ab-
solute angle as a sum of relative angles. In particular, our
method computes the absolute rotation angle of a steering-
wheel (with respect to an initial zero-degree position) as an
accumulation of inter-frame relative rotations. We can de-
tect the passage for the zero-degree position in order to re-
align the measured angle with the real (absolute) angle, thus
avoiding error propagation. This is, indeed, the only process
in which part of the model of the steering-wheel is required
and will be described briefly in the following.

We assume a circular motion around the wheel’s axis.
As a consequence, we can start from the assumption that
the points of the steering wheel move with the same circu-
lar motion. However, due to the pinhole camera model [3],
this is true in the image plane only if the focal plane of the
camera is parallel to the steering wheel plane. In the other
cases, because of the perspective, the points can be approx-
imated as moving on to an ellipse. Since our scope was to
provide a method that can work in as many situations as
possible, we have used an elliptical model as reference.

The goal of the application can be defined as the compu-
tation, frame by frame, of the absolute wheel angleϑt with
respect to a reference position (angleϑt = 0). We assume
that the motion can be classified for each frame as belonging
to two possible motion classes, according to the vehicle’s
trajectory. To this aim, we define themotion typem at time
t as a variable in the domainmt={<rect>,<curve> }
that characterizes the steering-wheel motion typical of rec-
tilinear driving or during a curve, respectively. In the first
case, we can assume a very limited wheel’s angle around
the zero position, whereas in a curve it is reasonable to
measure higher angle values. This assumption is confirmed
by ground-truth measurements. Furthermore, we assume
that the condition of angleϑt = 0 can be reliably detected
(calledalignmentin the following) by pattern matching. To
do this we rely on part of the steering wheel’s model: we
adopted a simplified model just enough to distinguish in the
search area between the steering wheel and other distrac-
tors. Fig. 2 reports two examples taken from Formula 1
cars: in the first case (Ferrari racing team, Fig. 2(a)) we
selected the upper rectilinear part of the steering wheel as
model and detected it with the Correlated Hough Transform
[4] that identifies parallel, near rectilinear lines; the second
steering wheel (former McLaren racing team wheel, Fig.
2(b)) shows two rays that can be used (with HT) as a model.
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(a) Driver’s head occlusion ex-
ample

(b) Light beam that confuses
the feature detection algorithm

(c) Example of feature detec-
tion and tracking

(d) View of the camera setup
(with the courtesy of Centro
Ricerche Fiat, Italy)

Fig. 1. The system proposed. (a) and (b) present two noisy situations, (c) the setup of the camera and (d) the feature detection
and tracking of the system.

(a) Ferrari’s steering wheel (b) Former McLaren’s
steering wheel

Fig. 2. Two examples of steering wheel from Formula 1 car.
(a) Ferrari car and (b) former McLaren car.

The wheel’s motion can be only inferred by computing
frame by frame the angular displacementαt by means of
syntactic feature detection and tracking. Due to the hypoth-
esis of cluttered and hostile environment, two conditions of
invalid or valid detection could occur. A condition is con-
sidered invalid when the signal-to-noise ratio or the lighting
conditions prevent for an acceptable feature detection. Next
subsection will describe the statistics used to reliably com-
pute the angular displacementαt in the case of valid condi-
tion. The use of statistics for improving feature tracking in
cluttered situation is reported also in [3].

To compute the absolute angle we use an adaptive model
described by the following equation:

ϑt = ϑt−1 + k1α
t + k2α

t−1 (1)

wherek1, k2 are two binary parameters. The condition of
(k1, k2)=(1,0) represents the case of valid detection. On
the other hand, the case of invalid detection requires fur-
ther investigation. In fact, when there are no information
available on the current frame, there are two possible deci-
sions: we can assume that the absolute angle is not changed

(i.e. the wheel has not been moved) or we can assume
that, during this frame, the driver has continued to move
the wheel in the same direction and with the same angle
(i.e. we assume a constant derivative of the absolute an-
gle, that is a constant relative angleαt). The first condition
(k1, k2)=(0,0) is true in the case of stationary motion con-
dition (i.e.,mt = mt−∆t), and the second(k1, k2)=(0,1) in
a transient situation, in whichmt 6= mt−∆t.

3.1. Angular displacement computation

Once the model of the motion is defined, the first phase is to
detect “significant” features on the wheel. A feature must be
considered as “significant” or “good” if it is easy to track be-
tween two consecutive frames. To extract features we used
the well-known algorithm of Tomasi-Kanade [5][6].

The definition of good feature is introduced in [5] and it
is based on the selection of corners as “good” features. Fig.
1(c) reports an example of feature extraction (the bound-
ing boxes). Therefore, given two consecutive framesIt and
It−1 and the corresponding set of detected features=t and
=t−1, where=t = {f t

1, ...f
t
nt
}, we use afeature tracking

method to match the features of=t with the features of
=t−1.

3.1.1. Feature Tracking

Let us consider a feature as a window of 3x3 points for the
sake of simplicity. In the case of elliptical motion of the
features, the actual motion of the features is not only trans-
lational, but roto-translational. As a consequence, a feature
does not only change its position inside the next frame, but
it also rotates. This involves a non-correspondence between
intensity of pixels with the same relative position, as shown
in Figure 3, where the dotted line version is the case of pure
translational motion.
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Fig. 3. The roto-translation of a 3x3 feature.

To track a feature we have implemented two methods.
The first is directly derived from the Lucas-Kanade track-
ing method [1][6] is based on the hypothesis of only transla-
tional motion. The second method considers a roto-translational
motion by modifying the Lucas-Kanade method to take also
the rotation into account.

Considering a coordinate system< O,Xn, Yn > with
the origin in the center of the 3x3 window in a reference
frame, the polar coordinates of each point of the window
in the reference frame is known and it is(ρn, ϑn). We can
easily compute the polar coordinates(ρ′1, ϑ

′
1) in the main

reference system:

ρ′1 =
√

ρ2
n + ρ2

1 − 2ρnρ1 cos ϑn (2)

ϑ′
1 = ϑ1 + arccos

(
ρ1 − ρn cos ϑn√

ρ2
n + ρ2

1 − 2ρnρ1 cos ϑn

)
(3)

Once these coordinates are known, it is straightforward
to obtain the coordinate(ρ′2, ϑ

′
2) of another point of the win-

dow in the new position by adding a displacement vector
(∆ρ,∆ϑ). Unfortunately, this is not true in the case of roto-
translational motion and this introduces an additional error
in the positioning of corresponding points of the window.
As a consequence, the matching will be less precise.

Let us callI andJ two consecutive frames. Thus, the
correct equation in the case of roto-translational motion should
be:

I(ρ′1 cos ϑ′
1, ρ

′
1 sinϑ′

1) = J((ρ′1 + ∆ρ) cos(ϑ′
1 + ∆ϑ),

(ρ′1 + ∆ρ) sin(ϑ′
1 + ∆ϑ)) (4)

These considerations refer to the general case with ellip-
tical motion and 3x3 window. Obviously, this method will
work also with larger windows and circular motion.

It can be interesting to underline that, due to the rotation
of the window, the new coordinates(ρ′2, ϑ

′
2) can correspond

to not integer coordinates, thus an interpolation method is
mandatory to determine the intensity of the real point. This
interpolation will introduce further approximations to the
matching. Please note that this interpolation is not neces-
sary if we suppose the motion as pure translational. More-
over, the computational load is heavily affected by the more
intensive computation and by the interpolation required by
the second method. As a consequence, and taking into ac-
count that the improvement in the efficacy introduced by the
second method is not so relevant, we have decided to sup-
pose initially the model as translational, by approximating
the search using the first method. Thus, a further refinement
phase is necessary that verifies if the motion can be accept-
able with an elliptic trajectory.

3.1.2. Feature Selection

The features’ motion in the space is computed in an angular
way with respect to a fixed center of the wheel (manually
set). In this way, a feature match{f t

i , f
t−1
j } identifies a rel-

ative angleαt(i, j). For the sake of brevity, in the following
we will omit the subscripts. Therefore, for each frame in a
valid condition we obtain a setAt = {αt

1, ..., α
t
k} of mea-

sured angle displacements between pairs of features, where
k < min(nt, nt−1).

Though this method is accurate, the setAt of measured
ancle displacements is typically full of outliers. The main
reasons are three. First, there is always a lot of noise in
camera-car videos (in particular if acquired with radio tech-
nologies as in the Formula 1 races). Second, some features
extracted and tracked could be background points (not be-
longing to the steering wheel) that satisfy the condition of
“good” feature. Unfortunately, the feature pairs tracked will
result in near-to-zero angle displacements that can affect the
final absolute angle computation, and that can be confused
with a condition of still wheel. This consideration hints that
in the setAt a systematic error due to near-to-zero displace-
ments must be taken into account. Finally, the hands of the
driver on the steering wheel can have their own motion that
is, most of the times, opposite to (or in general different
from) the steering wheel’s motion.

In accordance with the above considerations, we can
subdivide the setAt into two subsetsAt = At

+∪At
−, where

At
+ andAt

− contain only strictly positive or negative dis-
placements1, respectively. Fig. 1(c) reports in green the
features belonging toAt

− and in blue the features belonging

1Positive angles are associated to left curves, whereas negative angles
to right curves

39



αt =


arg min
i=1,...,|At|

|At|∑
j=1

(d(αt
i, α

t
j)), αt

i, αt
j ∈ At if mt = <rect>

1

|At|

|At|∑
k=1

αt
k, αt

k ∈ At if mt = <curve>

(5)

mt =
{

<rect> if (mt−1 = <rect> ∧ |ϑt| < Tϑ) ∨ (mt−1 = <curve> ∧ |ϑt| < Tϑ ∧ ∆ϑt < T∆ϑ)
<curve> otherwise

(6)

to At
+. Note that we discard near-to-zero values in order to

prevent the inclusion of the above-mentioned outliers due to
still objects.

If we defineAt as the largest subset betweenAt
+ and

At
−, the angle displacement is computed as defined in equa-

tion 5, whered(.) is the metric used to compute the distance
between angles. With the definition of equation 5, when
the angles are near-to-zero, the outliers’ distribution is sup-
posed to be uniform around zero and the median function is
a reliable statistic. Instead, in the curve situation, we discard
as outliers all the displacements with the opposite sign of the
majority of the measures. In other words, if the current state
is “rectilinear” the median of all the computed relative an-
gles is used, otherwise the mean of the more numerous set
between positive and negative displacements is selected as
relative angle for the current frame.

3.2. Motion type computation

Different statistics are used in dependence of the motion
type, as reported in equation 5. In our case the motion type
at time t is approximated by using the knowledge of the ab-
solute angle at timet and of the motion type at timet−1, as
stated in equation 6, whereTϑ is a threshold on the absolute
angle that fixes the maximum beyond which we consider a
curve,∆ϑt is the derivative of the absolute angle computed
at a distance in time of∆t (i.e. ∆ϑt = ϑt − ϑt−∆t), and
T∆ϑ is a threshold on the maximum derivative of the abso-
lute angle.

3.3. Valid/Invalid condition assertion

Equation 1 decides whether to compute the absolute angle
asϑt = ϑt−1 + αt in the case of valid condition (where
αt can be obtained with equation 5) or to compute it as
ϑt = ϑt−1 in the case of invalid condition and motion
type unchanged with respect to∆t frames ago, or asϑt =
ϑt−1+αt−1 in the case of invalid condition and motion type
changed.

In the system’s diagram reported in Fig. 4 it is possi-
ble to note that there are some invalid conditions. A first
possible condition is the presence of strong noise due to the

vibrations and jumps. This type of noise is usually horizon-
tally distributed in the image. For this reason, what we do to
detect this class of noise is to compute the vertical gradient
of the previous and current image. If the absolute derivative
of the average gray level of the resulting images is greater
than a thresholdT, a sudden change in horizontal edges is
present and, consequently, there is a high probability of in-
terference. Another problem arises when the vehicle enters
in a shadowed area (for example, due to trees at the road-
side). The large variation in the brightness of the scene may
result in the incorrect detection and tracking of the features.

4. EXPERIMENTAL RESULTS

To evaluate the proposed methods we collected data from a
vehicle instrumented with sensors able to get synchronized
telemetric data to compare our results with. In Fig. 1(d) an
example of setup of a vehicle is reported (with the courtesy
of Centro Ricerche Fiat, Italy).

In this paper we report the results achieve on a sequences
acquired by normal television and reports part of a Formula
1 race shot by a camera-car mounted on the left top of the
driver’s cockpit (as the one reported in Fig. 2(a)). We tested
our motion-based method on this sequence and the compar-
ison is reported in Fig. 5. This sequence was obtained with
the courtesy of Ferrari Gestione Sportiva Spa.

The graph in Fig. 5 shows the absolute wheel angle
ϑt during time, comparing the results achieved with the
method proposed in this paper and with an electro-mechanical
encoder (ground-truth). The continuous line (Real angle)
represents the ground-truth and the dashed line represents
the computed angle (Computed angle). In addition, hori-
zontal lines are used to show where the motion model is
classified as rectilinear (Rectilinear) and in curve (Curve).
Results achieved with the proposed method seem really in-
teresting since the computed curve is always very close to
the ground-truth. The average error in this example is about
3%. In particular, when the driving is rectilinear, the two
lines are almost identical. This result proves that comput-
ing the absolute angle by accumulating relative angles of
tracked features does not lead to cumulative errors in time;
in addition, frequent re-alignments of the computed angle
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Fig. 4. System’s flow diagram.

with the zero-degree position help to increase precision. Dur-
ing a curve, the computed and real angle are also very simi-
lar, but with some underestimation of the angle in the range
of positive values. This is mainly due to the fact that a
few static features visible in the scene tend to slightly lower
the value of the computed angle; these errors accumulate

in time, but, since the<curve> motion model generally
holds only for short time intervals, the absolute error is lim-
ited.

The graph in Fig. 5 shows also the results for the com-
puted angle achieved by computing the median angle over
all the tracked features, without discriminating between the
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Fig. 5. Graph showing the comparison between the ground-truth and the results obtained by our approach

two different motion type models. Results are significantly
worse than those achieved with the proposed method; in
particular, during the curve phase the computed angle re-
sults in an under-estimation of the real angle of about 30
degrees on average. These larger errors are mainly due to
the greater amount of outliers affecting the statistic compu-
tation, and prove the usefulness of the classification of the
motion into motion models.

5. CONCLUSIONS

In this paper we have described our method for comput-
ing the absolute angle of a steering wheel by using only a
single camera, and in presence of occlusions and cluttered
situations. The proposed approach is based on the compu-
tation of significant features by means of Tomasi-Kanade
algorithm and on the subsequent tracking of them by using
a modified version of the Lucas-Kanade tracking algorithm.
This modification takes into account the model of the mo-
tion of the points belonging to the steering wheel.

The computation both of the angle displacement and the
absolute angle depends on the motion type and on the va-
lidity of the situation. A feature selection method combined
with a set of rules to compute the relative angle for each
frame are then used to remove noise and outliers. This ap-

proach has been tested in real and extreme conditions and
compared with ground-truth obtained by telemetric data.
Results are promising and prove that the approach based on
motion model is effective.
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