Microscopic In Vivo Description of Cellular Architecture of Dermoscopic Pigment Network in Nevi and Melanomas

Giovanni Pellacani, MD; Anna Maria Cesinaro, MD; Caterina Longo, MD; Costantino Grana, MD; Stefania Seidenari, MD

Objective: To characterize the microscopic aspects of the dermoscopic pigment network in vivo, by means of confocal scanning laser microscopy.

Design: Confocal imaging was performed on melanocytic lesions characterized by pigment network at dermoscopy. Some confocal architectural and cytologic features, as observed at the dermoepidermal junction, were morphologically described and quantified by means of a dedicated program.

Setting: University medical department.

Study Population: We studied confocal images of 15 melanomas, 15 dermoscopic atypical nevi, and 15 common nevi.

Main Outcome Measures: Features referring to aspect, size, regularity, homogeneity, and infiltration of dermal papillae and to cellular size, regularity, and atypia were described by 2 observers on confocal images. Mean dermal papillary diameter, mean cell area, and shape irregularity were quantified by drawing papillae and cell contours on confocal images and measured with the use of a computer program.

Results: Pigment network in melanomas consisted of large basal cells that circumscribed small to medium-sized dermal papillae with marked cellular atypia, sometimes infiltrating dermal papillae. On the other hand, common acquired nevi were characterized by lack of atypical cells and edged dermal papillae. Atypical nevi presented intermediate characteristics between clearly benign and malignant lesions.

Conclusion: Cellular atypia was the most sensitive feature for melanoma diagnosis, whereas the presence of nucleated cells infiltrating dermal papillae was the most specific one.

Arch Dermatol. 2005;141:147-154

In vivo reflectance-mode confocal scanning laser microscopy (CSLM) is a novel technique enabling the noninvasive imaging of the skin in horizontal planes at a quasi-histologic resolution. Cellular reflectivity, shape, and distribution can be described when one attempts to characterize the physiologic or pathologic condition examined. Because pigment melanin is a strong source of contrast in CSLM, this technique seems particularly helpful for differentiating benign and malignant melanocytic lesions. Although superficial structures such as the epidermis and papillary dermis can be visualized with high contrast, the resolution fades at depths greater than 200 µm, with a complete loss of image detail at the 250-µm depth, corresponding to the upper part of the reticular dermis. Therefore, CSLM examination of flat and palpable lesions rather than nodular ones appears useful for distinguishing between atypical nevi and melanomas (MMs). Surface epiluminescence microscopy techniques such as dermoscopy enable the distinction of subsurface structures, thereby increasing diagnostic performance for MMs with respect to naked-eye examination, as confirmed by 2 meta-analysis studies. Moreover, the correlation of dermoscopic features with histopathologic features was studied, despite difficulties due to the different resolution and observation plane. Confocal scanning laser microscopy represents the missing link between dermoscopy and histologic examination by producing horizontal sections of the skin with precise correspondence to the dermoscopic feature at cell-
ing the recent consensus meeting via the Internet by the n
responding to the pigment network and to correlate them
The aim of our study was to identify the CSLM aspects cor-
diagnostic value and to improve diagnostic performance.
features would be of uppermost importance to clarify its
of in vivo identification of the underlying histopathologic
lar holes and thick lines. Owing to the correlation of an atypi-
sion and a darkly pigmented or gray network with irregu-
lines distributed more or less regularly throughout the le-
Consensus Meeting Definition†
Typical pigment network 0 3 (20) 15 (100)
Atypical pigment network 15 (100) 12 (80) 0

Abbreviation: MMs, melanomas.
*Significant compared with MMs (P<.05).
†Described in Argenziano et al.27

ular-level resolution and correspondence to histologic

One of the most important dermoscopic criteria in the
diagnosis of pigmented skin lesions is represented by the
pigment network.22-25 Alterations of network line width and
hole size are frequently observed in MMs. To standardize
the terminology, numerous nonreproducible network de-
scriptors, such as regular/irregular, discrete/prominent,
wide/narrow, and delicate/broad,26 were substituted dur-
ing was filled with water and the arm of the CSLM with the
×30 water immersion objective lens (numerical aperture, 0.9)
was placed onto it. The instrument and the acquisition modality
for registration of single high-resolution images (475 × 350 µm,
with a resolution of 640 × 480 pixels) have been described else-
where.2,26 An automated stepper was used to obtain a grid of 16
contiguous horizontal images at a selected depth that con-
structed a montage image with an 1.9 × 1.4-mm image size
in vivo field of view (block image). A sequence of 30 block images was ac-
cquired for each lesion at the level of the dermal-epidermal junc-
tion and mounted by means of software we developed to obtain
a 7.68 × 576 pixels and a resolution of 16 million colors.

The CSLM images were acquired by means of a near-infrared reflectance CSLM apparatus (Vivascop 1000, Lucid Inc, Roch-
ester, NY). After acquiring the dermoscopic image, the adapter
ring was filled with water and the arm of the CSLM with the
×30

Digital dermoscopy imaging was performed with a digital vid-
miroscope (VideoCap 100; DS-Medica, Milan, Italy), using 20-, 50-, and 200-fold magnification and positioning the probe onto the CSLM adapter ring. The instrument has been
described elsewhere.28 The images were digitized by means of a
Matrox Orion frameboard (Matrox Electronic Systems Ltd, Dorval, Quebec) and stored by an image acquisition program (VideoCap 8.09; DS-Medica) that is compatible with Micro-
soft Windows systems (Microsoft Corporation, Redmond, Wash.). The digitized images offer a spatial resolution of

METHODS

LESION IMAGES

This study included a total of 8328 images acquired by means of CSLM referring to melanocytic lesions, including 3097 referring to 15 MMs; 2844 referring to 15 dermoscopically atypi-
cal nevi, and 1887 referring to 15 common melanocytic nevi. All presented with the pigment network at the dermoscopic evaluation. All MMs had a Breslow thickness of less than 1 mm (mean±SD, 0.38±0.29 mm); 3 cases of these were in situ les-
sions. The presence of a preexisting nevus was reported in 3 of
10 MMs; 1 case showed histologic characteristics of a congenital-
type nevus. Atypical nevi corresponded to lesions with equivo-
cal aspects at clinical and dermoscopic inspection, and exci-
sion was performed to rule out an MM. Common nevi included
in this study had typical dermoscopic features and were ex-
cised only for cosmetic reasons.

INSTRUMENTS

Before biopsy, lesion images were recorded by using digital der-
moscopy and CSLM. To have an exact correspondence between
dermoscopic and CSLM images, the 1-cm-diameter CSLM adapter
ring was first positioned onto the skin and centered on the le-
sion, after which we obtained the dermoscopic and CSLM im-
gages. All lesions were then excised, after a silk suture was posi-
tioned at one pole of the specimen to clarify orientation, and the
excised lesions underwent histologic examination for diagnos-
tic confirmation and pattern correlation. Afterward, the dermo-
scopic image was resized and rotated for point-by-point corre-
spondence with the reconstructed confocal image. Thus, the high-
resolution confocal image could be positioned onto the x-y plane
of the dermoscopic image for exact pattern correlation. Moreover,
a series of equidistant histologic sections that started from the
silk suture enabled the correlation of the dermoscopic and confocal aspects with histopathologic findings.

IMAGE ACQUISITION

Before biopsy, lesion images were recorded by using digital der-
moscopy and CSLM. To have an exact correspondence between
dermoscopic and CSLM images, the 1-cm-diameter CSLM adapter
ring was first positioned onto the skin and centered on the le-
sion, after which we obtained the dermoscopic and CSLM im-
gages. All lesions were then excised, after a silk suture was posi-
tioned at one pole of the specimen to clarify orientation, and the
excised lesions underwent histologic examination for diagnos-
tic confirmation and pattern correlation. Afterward, the dermo-
scopic image was resized and rotated for point-by-point corre-
spondence with the reconstructed confocal image. Thus, the high-
resolution confocal image could be positioned onto the x-y plane
of the dermoscopic image for exact pattern correlation. Moreover,
a series of equidistant histologic sections that started from the
silk suture enabled the correlation of the dermoscopic and confocal aspects with histopathologic findings.

IMAGE DESCRIPTION

Dermoscopic Image Description

We used a systematic list of the traditional dermoscopic vari-
ables (Table 1) for description of the pigment network.22-25
In addition, each image was classified as having either a typi-

Table 1. Description and Frequency of Dermoscopic Features of Pigment Network

<table>
<thead>
<tr>
<th>Feature</th>
<th>MM (n = 15)</th>
<th>Atypical Nev (n = 15)</th>
<th>Common Nev (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigment Network</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness of grid line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delicate</td>
<td>1 (7)</td>
<td>1 (7)</td>
<td>14 (93)*</td>
</tr>
<tr>
<td>Broad</td>
<td>12 (80)</td>
<td>11 (73)</td>
<td>1 (7)*</td>
</tr>
<tr>
<td>Both</td>
<td>2 (13)</td>
<td>3 (20)</td>
<td>0</td>
</tr>
<tr>
<td>Size of the meshes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narrow</td>
<td>1 (7)</td>
<td>4 (27)</td>
<td>14 (93)*</td>
</tr>
<tr>
<td>Wide</td>
<td>12 (80)</td>
<td>9 (60)</td>
<td>1 (7)*</td>
</tr>
<tr>
<td>Both</td>
<td>2 (13)</td>
<td>2 (13)</td>
<td>0</td>
</tr>
<tr>
<td>Network color</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td>2 (13)</td>
<td>6 (40)</td>
<td>13 (87)*</td>
</tr>
<tr>
<td>Dark</td>
<td>8 (53)</td>
<td>7 (47)</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Both</td>
<td>5 (33)</td>
<td>2 (13)</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Regularity of the network texture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular</td>
<td>15 (100)</td>
<td>15 (100)</td>
<td>0</td>
</tr>
<tr>
<td>Irregular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogeneity of the network structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogeneous line thickness</td>
<td>0</td>
<td>3 (20)</td>
<td>15 (100)</td>
</tr>
<tr>
<td>Homogeneous hole size</td>
<td>0</td>
<td>4 (27)</td>
<td>14 (93)</td>
</tr>
</tbody>
</table>

Consensus Meeting Definition†

<table>
<thead>
<tr>
<th>Feature</th>
<th>MM (n = 15)</th>
<th>Atypical Nev (n = 15)</th>
<th>Common Nev (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical pigment network</td>
<td>0</td>
<td>3 (20)</td>
<td>15 (100)*</td>
</tr>
<tr>
<td>Atypical pigment network</td>
<td>15 (100)</td>
<td>12 (80)</td>
<td>0</td>
</tr>
</tbody>
</table>

©2005 American Medical Association. All rights reserved.
CSLM Image Description

Together with the clinical, subjective description of the observable CSLM aspects performed by 2 observers (G.P. and S.S.), a semiautomatic method was introduced for CSLM image evaluation to obtain the quantification of architectural and cytologic features. To provide quantitative measures on manually annotated images, a computer program that is compatible with Microsoft Windows was created by using the Visual C++ 6.0 development system (Microsoft Corporation). Contours were drawn around all visible dermal papillae on reconstructed images (7.60 × 6.55-mm field of view). For contouring, we used a 1-pixel–wide free-form brush without aliasing from a standard digital imaging program (Paint Shop Pro 7.0; Jasc Software Inc, Eden Prairie, Minn). Cells were chosen on the basis of visual inspection. The number of cells per lesion varied from a minimum of 20 to a maximum of 116, depending on their similarity, for a representative sample of cells per lesion. Connected areas were extracted from the background by means of a labeling algorithm. To identify regions delimited by unconnected segments, the border was progressively extended by means of the sequential application of the mathematical morphology operators dilation and erosion with 2 different structuring elements, up to the closure of the contour.

Dermal Papillary Features

We evaluated the size and regularity of dermal papillae on the reconstructed images (7.60 × 6.55-mm field of view). The mean diameter of dermal papillae was computed by means of the previously described program. Moreover, we calculated the number of dermal papillae with a diameter of less than 100 µm (small papillae), those ranging from 100 to 200 µm (medium papillae), and those greater than 200 µm (large papillae). Each lesion was subsequently regarded as being characterized by small, medium, or large dermal papillae on the basis of the most frequently represented papilla category. Finally, we visually inspected dermal papillae for shape regularity (regular/irregular) and for homogeneity of aspect and distribution throughout the lesion (homogeneous/nonhomogeneous).

Cellular Aspects

According to previous reports concerning normal skin and melanocytic lesion observation by means of CSLM, we evaluated cell size and aspect on the high-resolution images (475 × 350-µm field of view). We used the dedicated program to calculate mean cell area and its standard deviation (size irregularity). On the basis of cell-area values obtained from typical nevi, lesions presenting a mean cell area less than 250 µm² (corresponding to a mean diameter of approximately 18 µm) were regarded as being characterized by small cells, whereas large-cell lesions corresponded to higher mean cell–area measurements. Lesion cells were also morphologically described by considering cytologic atypia throughout the lesion. Three different degrees of cellular atypia were identified: typical was the term used for monomorphous small, polygonal cells; mild atypia was used when medium to large cells were round or oval, had bright cytoplasm, and had peripheral nuclei that were sporadically observable within typical cell architecture; and marked atypia was used when numerous cells were irregular in size, shape, and reflectivity, were round to oval or stellate, had (occasionally) branch-ing dendritic-like structures, and were distributed throughout the lesion. Moreover, we reported the presence of nonaggregated cells inside dermal papillae by distinguishing between round to oval cells, those having refractive cytoplasm and an eccentric dark nucleus, and those having plump irregularly shaped bright cells with ill-defined borders and no visible nucleus.

Histopathologic Description

We described architectural patterns and cytologic features. Skin architecture was evaluated for regularity of the rete ridges, thinning or thickening of the epidermis, and flattening of the dermal papillae. Melanocytes were evaluated for morphologic characteristics, and the presence of papillary infiltration and melanophages was also reported.

Table 2. Values Obtained by Quantitative Assessment of Dermal Papillae and Cells at the Dermoepidermal Junction

<table>
<thead>
<tr>
<th>Measurement</th>
<th>MMs (n = 15)</th>
<th>Atypical Nevi (n = 15)</th>
<th>Common Nevi (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal Papillae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean diameter, mm</td>
<td>107.4 ± 39.7</td>
<td>125.5 ± 65.5</td>
<td>127.0 ± 54.0</td>
</tr>
<tr>
<td>mean ± SD, µm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papilla type, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small (<100 µm)</td>
<td>5 (33)</td>
<td>6 (40)</td>
<td>5 (33)</td>
</tr>
<tr>
<td>Medium (100-200 µm)</td>
<td>10 (67)</td>
<td>7 (47)</td>
<td>9 (60)</td>
</tr>
<tr>
<td>Large (>200 µm)</td>
<td>0</td>
<td>2 (13)</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size, mean ± SD, µm²</td>
<td>665.7 ± 593.5</td>
<td>186.8 ± 87.6</td>
<td>162.8 ± 32.7</td>
</tr>
<tr>
<td>Size irregularity</td>
<td></td>
<td>346.6 ± 186.6</td>
<td>81.3 ± 53.7</td>
</tr>
<tr>
<td>Type, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>4 (27)</td>
<td>11 (73)*</td>
<td>15 (100)*</td>
</tr>
<tr>
<td>Large</td>
<td>11 (73)</td>
<td>4 (27)*</td>
<td>0*</td>
</tr>
</tbody>
</table>

Abbreviation: MMs, melanomas.
*Significant compared with MMs (P < .05).

RESULTS

The dermoscopic aspects are summarized in Table 1, and the cytologic and architectural features that were calculated and observed in confocal images are reported in Table 2 and Table 3, respectively.

COMMON NEVI

At the dermoscopic observation, common melanocytic nevi were characterized by a regular pigment network, with no or irregular perikaryal reflectivity, and had peripheral nuclei that were regularly positioned.
predominantly constituted by delicate light-brown grids and narrow meshes. These lesions presented homogeneous hole size and line width. In the images obtained by CSLM, dermal papillae at the dermoepidermal junction appeared as dark round to oval areas that were medium in 9 of 15 lesions, small in 5, and large in 1, with a mean diameter of 127 µm. Dermal papillae were of regular size in 7 (47%) of the 15 lesions and were homogeneously featured in 14. In all cases, the dermal papillae were circumscribed by a rim of refractive cells that corresponded to small melanocytes and melanin-rich keratinocytes. The papillae lacked cytologic atypia and appeared as bright rings separated by a thin, structureless, slightly refractive space that sharply contrasted with the dark background (edged papillae) (Figure 1). In 1 lesion, with nonhomogeneous darkly pigmented areas at dermoscopy (pigment blotches), dermal papillae focally disappeared and were replaced by a stretch of bright typical cells. In that lesion, no alteration of the rete ridges and no atypical cells were observed at histologic examination. In 5 cases, some melanophages were present in the papillary dermis and correlated with the observation of plump bright cells at CSLM examination.

ATYPICAL NEVI

Atypical melanocytic nevi were predominantly characterized by an irregular pigment network that usually consisted of broad grids and wide meshes and that were darkly pigmented in 7 cases. Homogeneity of network line thickness and hole size was observed in 3 and 4 of 15 lesions, respectively. At CSLM observation, the mean diameter of dermal papillae was similar to that of common nevi. Dermal papillae were predominantly small in 6 of 15 nevi, medium in 7, and large in 2; irregular in shape in 13 cases; and nonhomogeneous in 8. In 11 of 15 atypical nevi, edged papillae were observable, whereas the remaining 4 lesions were characterized by small to medium dermal papillae without a demarcated rim of bright cells but separated by a series of large reflecting cells (nonedged

<table>
<thead>
<tr>
<th>Feature</th>
<th>MM (n = 15)</th>
<th>Atypical Nevi (n = 15)</th>
<th>Common Nevi (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal Papillae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular</td>
<td>4 (27)</td>
<td>2 (13)</td>
<td>7 (47)</td>
</tr>
<tr>
<td>Irregular</td>
<td>11 (73)</td>
<td>13 (87)</td>
<td>8 (53)</td>
</tr>
<tr>
<td>Aspect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogeneous</td>
<td>1 (7)</td>
<td>2 (13)</td>
<td>10 (67)</td>
</tr>
<tr>
<td>Nonhomogeneous</td>
<td>14 (93)</td>
<td>8 (53)</td>
<td>5 (33)</td>
</tr>
<tr>
<td>Papillary contour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edged papillae</td>
<td>1 (7)</td>
<td>11 (73)</td>
<td>10 (67)</td>
</tr>
<tr>
<td>Nonedged papillae</td>
<td>11 (73)</td>
<td>4 (27)</td>
<td>0</td>
</tr>
<tr>
<td>Both</td>
<td>3 (20)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytologic atypia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>1 (7)</td>
<td>9 (60)</td>
<td>15 (100)</td>
</tr>
<tr>
<td>Mild</td>
<td>6 (40)</td>
<td>6 (40)</td>
<td>0</td>
</tr>
<tr>
<td>Marked</td>
<td>8 (53)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carpet of cells</td>
<td>10 (67)</td>
<td>2 (13)</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Cells in Dermal Papillae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleated</td>
<td>8 (53)</td>
<td>1 (7)</td>
<td>0</td>
</tr>
<tr>
<td>Plump bright</td>
<td>8 (53)</td>
<td>8 (53)</td>
<td>5 (33)</td>
</tr>
</tbody>
</table>

Abbreviation: MM, melanomas.
*Significant compared with MMs (P<.05).

Figure 1. Pigment network in a typical nevus. A, Dermoscopic aspect characterized by a bilayer structure (original magnification ×200).
B, Confocal appearance of dermal papillae edged by a rim of refractive polygonal cells without cytologic atypia (original magnification ×1000).
C, Regular rete ridges and typical cytologic features at histopathologic examination (original magnification ×40).
papillae). In 2 cases, carpets of bright typical cells were observed. Four lesions were characterized by large cells, and 6 cases presented some medium to large cells that were round or oval, had bright cytoplasm, and had peripheral nuclei, corresponding to a mild cytologic atypia. Moreover, the presence of cells inside the dermal papilla was reported in 9 cases; in 8 of these, the cells in the dermal papilla were plump bright cells, but in 1, they were nucleated cells. At histopathologic examination, cytologic or architectural disorders were observed in most cases.

MELANOMAS

An irregularly broadened pigment network with wide, nonhomogeneous meshes characterized all MMs, except in 1 case that had an irregular, slightly pigmented, delicate grid. The dermal papillae were smaller than the nevi. Fourteen of 15 malignant lesions were formed by nonhomogeneous, small to medium dermal papillae without a demarcated rim of bright cells (nonedged papillae) and in 3 cases with edged papillae. In a single case that corresponded to the in situ MM with a delicate pigment network at dermoscopy, edged papillae were present exclusively. Nonedged papillae, separated by a series of large bright cells, corresponded to a broadened, darkly pigmented network at dermoscopy and to a disarrangement of the dermoepidermal architecture, which was characterized by enlarged rete ridges, small dermal papillae, and epidermal flattening at histopathologic examination (Figure 2). Moreover, in 10 cases, the confocal reticular architecture, represented by lines of cells and dermal papillae, was occasionally interrupted by stretches of numerous, irregularly shaped, highly reflective cells that corresponded to pigment blotches at dermoscopy and to epidermal flattening with basal proliferation of large malignant cells at histopathologic examination. When we analyzed cytologic features by means of CSLM, MMs were characterized by larger and more irregular cells compared with acquired nevi. Marked cellular atypia was regarded as a specific marker of malignancy and was exclusively present in 8 MMs (Figure 3A and B). In the remaining malignant lesions, mild atypia was present (Figure 3C and D), with the exception of a single case that corresponded to an in situ MM. Large irregular cells with refractive cytoplasm and an eccentric dark nucleus infiltrating the papilla were observed in 8 of 15 MMs that had a Breslow thickness greater than 0.2 mm and that corresponded to invasive malignant cells at histopathologic examination (Figure 4). Moreover, plump bright cells with ill-defined borders were present in 8 of 15 MMs and corresponded to melanophages at histopathologic examination.

COMMENT

The recent introduction of CSLM for the study of inflammatory skin disorders and skin tumors has allowed the noninvasive examination of the epidermis and superficial dermis at cellular resolution and has provided evidence of relevant correlations with histologic characteristics. For a 803-nm wavelength, melanin represents a strong source of contrast, enabling the study of melanocytic lesions with imaging depth limited to 200 to 300 µm. Thus, the study of cytologic and architectural features at the dermoepidermal junction may represent an appropriate approach for differentiating between benign and malignant melanocytic lesions. Characteristic CSLM cytologic features concerning
melanocytic nevi and MMs have been reported, and some aspects, such as the disarray of the normal honeycombed architecture of the stratum spinosum, the presence of polymorphic reflecting cells in the basal cell layers, at times spreading upward in pagetoid fashion, and the presence of dendritic-like structures in superficial layers in lentigo maligna MMs, seem useful for MM identification. Recently, we reported the possibility of an exact correlation between dermoscopic findings, CSLM features, and histopathologic findings by focusing on pigment globules as observed in Spitz nevi and by characterizing different confocal features of melanocytic

Figure 3. Cellular features. Confocal aspect (A) of marked cytologic atypia in a melanoma (original magnification ×1000), and its corresponding histologic image (B) (original magnification × 100). Confocal aspect (C) of mild cellular atypia (arrowheads) that is sporadically observable within typical cell architecture in a melanoma (original magnification ×1000), and its corresponding histologic image (D) (original magnification ×200).

Figure 4. Confocal aspect (A) of nucleated cells (arrowheads) infiltrating dermal papilla (dashed circle) in an invasive melanoma (Breslow thickness, 0.28 mm) (original magnification ×1000), and its corresponding histologic image (B) (original magnification ×100).
nests in melanocytic lesions. Those studies aimed to characterize the dermal-epidermal structure by considering both cytologic features and architecture. The contemporary use of dermoscopy and CSLM image reconstruction enabled the exact identification of the dermoscopic pattern and its corresponding confocal feature. Histopathologic correlation was obtained by sectioning along an orientation line that passed through the center of the explored area. In the present study, we focused on the different confocal aspects of the dermoscopic pigment network, which is considered to be one of the most important features for differential diagnosis between melanocytic lesions. Moreover, an atypical pigment network represents 1 of the 3 major criteria for MM diagnosis according to the new 7-point checklist, which is the semiquantitative algorithm based on pattern analysis proposed by Argenziano et al. The CSLM evaluation enabled the characterization of cytologic and architectural aspects of the pigment network. The refractive rings circumscribing dermal papillae (edged papillae) corresponded to the darker external lines of the pigment network grids observed by means of high-magnification dermoscopy and gave rise to the bilayer network architecture previously described by Puppin and coworkers (Figure 1). In contrast, small to medium dermal papillae without edge cells (nonedged papillae) correlated with a broadened dark network (Figure 2). Moreover, the characterization of cytologic features underlying specific dermoscopic aspects in melanocytic lesions enabled the identification of clues for MM diagnosis. The implementation of a quantitative method for feature description produced objective measures of characteristic confocal aspects. In our cases, MMs were characterized by large basal cells associated with small to medium dermal papillae and marked cellular atypia with large round to oval cells and/or stellate cells sometimes infiltrating dermal papillae. In our cases, the presence of cellular atypia (Figure 3) was suggestive of MM and enabled the identification of 14 of 15 malignant lesions, although 6 of 30 nevi were misclassified. Furthermore, nucleated cells infiltrating dermal papillae (Figure 4) were present in 8 of 15 MMs and in 1 atypical nevus and were considered a preliminary specific marker of malignancy. On the other hand, common acquired nevi were characterized by the lack of atypical cells and the presence of small to large edged dermal papillae that were homogeneously distributed throughout the lesion, although an irregular dermal papilla shape was present in more than half of the lesions. Atypical nevi presented intermediate characteristics between clearly benign lesions and MMs. In fact, some characteristics more frequently observable in MMs, such as the presence of nonedged nonhomogeneous papillae with large cells and cytologic atypia, were also reported in some atypical nevi.

Thus, the analysis of confocal cytologic and architectural features at the dermoepidermal junction may be of help for a more accurate distinction between MMs and acquired melanocytic nevi in the presence of dermoscopic pigment network. The implementation of a program for the composition of an overall CSLM image and the histopathologic section drawn along an established direction enabled an excellent correlation of CSLM aspects with the corresponding dermoscopic pattern and histopathologic features. In addition, CSLM allowed the in vivo characterization of the histopathologic substrate of the pigment network. Different confocal features were useful for improving MM diagnosis, although confocal features of pigment network in atypical nevi were very similar to those in MMs in some cases. Because CSLM produces horizontal planes of the skin at a quasi-histopathologic resolution, we propose the confocal study of single dermoscopic aspects and the evaluation of characteristic confocal features for the distinction between benign and malignant lesions, offering a new approach to difficult-to-diagnose melanocytic lesions to improve diagnostic accuracy in melanoma.

Accepted for Publication: June 24, 2004.
Correspondence: Giovanni Pellacani, MD, Department of Dermatology, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100 Modena, Italy (pellacani.giovanni@unimo.it).

REFERENCES

Lancet Oncol. 2002;3:159-165.
18. Yadav S, Vossaert KA, Kopf AW, Silverman M, Grin-Jorgensen C. Histopatho-
logic correlates of structures seen on dermoscopy (epiluminescence microscopy).
19. Soyer HP, Kenet RO, Wolf IH, Kenet BJ, Cerroni L. Clinicopathological correla-
22-28.
hue in dermoscopy of melanocytic lesions: a dermoscopic-pathologic study.
22. Pehamberger H, Steiner A, Wolff K. In vivo epiluminescence microscopy of pig-
mented skin lesions, I: pattern analysis of pigmented skin lesions. J Am Acad
agnosis of pigmented lesions using digital epiluminescence microscopy: grad-
24. Pehamberger H, Binder M, Steiner A, Wolff K. In vivo epiluminescence micros-
100:356S-362S.
25. Steiner A, Binder M, Schumper M, Wolff K, Pehamberger H. Statistical evalua-
tion of epiluminescence microscopy criteria for melanocytic pigmented skin lesions.
26. Stanganelli I, Burroni M, Rafanelli S, Bucchi L. Intraobserver agreement in in-
33:584-589.
27. Argenziano G, Soyer HP, Chimenti S, et al. Dermoscopy of pigmented skin le-
48:679-693.
of pigmented skin lesion images recorded by a videomicroscope: comparison
between polarizing mode observation and oil/slide mode observation. Skin Res
29. Pellacani G, Cesinamo AM, Grana C, Seidenari S. In vivo confocal scanning laser
microscopy of pigmented Spitz nevi: comparison of in vivo confocal images with
30. Pellacani G, Cesinamo AM, Seidenari S. In vivo confocal reflectance microscopy
for the characterization of melanocytic nests and correlation with dermoscopy and
31. Argenziano G, Fabbrocini G, Carli P, De Giorgi V, Sammarco E, Delfino M. Epi-
luminescence microscopy for the diagnosis of doubtful melanocytic skin le-
sions: comparison between the ABCD rule of dermatoscopy and a new 7-point
32. Puppin D, Salomon D, Saurat JH. Amplified surface microscopy: preliminary eval-
uation of a 400-fold magnification in the surface microscopy of cutaneous mel-