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TOPICS OF TODAY

1) Introduction, motivation and applications

2) The pipeline: the tracking models

3) Tracking by detection.. Thus we need detection, first!
4) And Re-identification?

5) If Single target tracking is difficult,
6) Multiple target tracking is more difficult...

7) The problem of performance

8) New ideas: Cognitive Based and Deep Learning based MTT

9) Multi camera Multiple target tarcking

10) Conclusions, at the end.




1. INTRODUCTION,MOTIVATIONS AND APPLICATION




RESEARCH TOPICS

Googling at «google scholar», for research topics
(search june 2016)

Since

2012
VERY HOT deep learning 23000
RESEARCH video-surveillance 18300
TOPICS ! tracking video 267000

background suppression 5190
multi- target tracking 3150

people detection 3160
people tracking 3950
re-identification 8430

egocentric vision 291

Since

2015
16600
8820
81300

1620
1620
999
1120
3020
161

Average
2012-2014
2133
3160
61900

1190
510
720
943
1803
43




FROM DETECTING
TO REASONING ON PEOPLE
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Application trends




SURVEILLANCE




SPORT AND ENTERTAINMENT

< Trackin‘é.players'in rea_‘l—.,,}-ihwe’ =L 4530

Understanding player motion
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AUTOMOTIVE

DR(eye)VE: a Dataset for Attention-Based Tasks with Applications to
Autonomous and Assisted Driving

Thanks to Francesco Solera, Stefano Aletto, Andrea Palazzi,
Simone Calderara

Imagelab @WCVPR 2016

adas Morane




HUMAN-X-INTERACTION
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EGOCENTRIC VIEW

Social behavior analysi
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2. THE PIPELINE: THE TRACKING MODELS




WHAT CAN WE NEED

Humans recognize motion
and recognize by motion

We need

* .

Computer vision for 2D to 3D space

Frame spatial analysis (localization)

Video motion analysis for Temporal coherency
Learning

Recognizing similar patterns in the space and
time



THE CLASSIC PIPELINE (IN SURVEILLANCE)

Low-level Information
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From Beyond Multiple target tracking Loris Bazzani phd thesis Verona 2012



PROBABLY IT'S NOT A PIPELINE

video

Understanding the context:

calibration, 3D reconstruction : W Humans recognize motion
and recognize by motion

Spatial Coherence:
Segmentation/Detection

Feature extraction
(Appearance Patterns, Motion,
Depth, Shape, Texture,
Trajectory..)

Re-identification

Machine
learning

Understanding:
making inference on
Action/activity/behaviour

Temporal coherence:
Tracking




THE FIVE COMPONENTS IN TRACKING

The (unsolved) questions in tracking a single or multiple targets

1)
2)
3)

4)
5)

Which area to track?
Which visual/ motion features and representation to extract and how?

Which model/status to update and keep in an internal representati9on
short and long term memory?

Which inference to provide?
Which model prediction for the spatial and temporal coherence?

Representation inference
area

model

Internal representation




DETECTION AND TRACKING

Two connected dichotomies
1) DATA DRIVEN vs MODEL DRIVEN
1) TRACKING BY DETECTION vs DETECTION BY TRACKING

The connection between tracking and detection is debated since the famous
2000’s PAMI special issues...

4



THE FIVE COMPONENTS
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Internal representation

inference

model

Model ( the status of known target(s))



(DETECTION BY) TRACKING

Detection by tracking
or tracking without detection

For single target tracking

* When an initialization is given
( multimedia)

e When users are involved
(HCI)

* Indisjoined multi-camera
(re-identification)

O

¢

Spatio-temporal
Coherent
identification

Model: the target(s)

Model definition and

updated (initial target
detection/selection)

TRACKING

DETECTION
(localization)

Data: the image frames



TRACKING BY DETECTION

Data: the image frames

Spatio-temporal
TRACKING Coherent

identification

Model creation and
updated

<

2
Wl

Model: the target(s)

Tracking by detection

 When detection is easy
(video-surveillance)

e When detection is easier
than prediction
(MTT, crowd)

* Inoverlapped multicamera



Spatial Coherence:

Segmentation/Detection

Our visual behavior
Temporal coherence:
Tracking Is not so different...

The path:

The stimuli from retinae through two parallel path reach the lateral geniculate

nucleus in thalamus, then to the cortex in the occipital lobe and then
1) Two parallel paths

1) The way of WHAT in the temporal lobe perceives color, shape of the
object, the face..

2) The way of WHERE in parietal lobe provides localization during the
time of such objects

2) Centers hierarchically connected, process information and work together



FOR HUMANS TOO

The path: (E. Kendall, 2008)

1) The stimuli from retinae through two parallel path reach the lateral
geniculate nucleus in thalamus, then to the cortex in the occipital lobe
and then in the temporal and frontal lobes.

2) Two parallel paths

1) The way of WHAT in the temporal lobe perceives color, shape of the
object, the face..

2) The way of WHERE in parietal lobe provides localization during the
time of such objects

3) Centers hierarchically connected, process
information and than come back
to the WHAT area and work together

Based on attention and purpose




A FEW WORDS ON DETECTION

Target detection:
A. No target model (implicit in the context)
B. A given target model (humans, vehicle, animals...)
C. Learning target model by many many examples




A) NO TARGET MODEL

Detection by background suppression

- For static camera(s)

- For cameras with constrained motion (Ptz)
- In surveillance

Still open (?) questions
- Background initialization
- Background model update

- Background suppression




BACKGROUND SUPPRESSION—AN OLD RESEARCH

Google

Scholar

Articles
Case law

My library

Any time

Since 2016
Since 2015
Since 2012
Custom range...

Sort by relevance
Sort by date

include patents
include citations

Create alert

MOG and shadows MOG2- OpenCv

background suppression video

About 163,000 results (0.06 sec)

Detecting moving objects, ghosts, and sh:
R Cucchiara, C Grana, M Piccardi... - Pattern Analysis
... 3@ and 3c are two frames (#180 and #230) of a vide
MVO and its connected shadows at frame #180; shadc
areas is essential also for obtaining an accurate and re
Cited by 1493 Related articles All 18 versions Cite

Improving shadow suppression in movin
R Cucchiara, C Grana, M Piccardi... - Intelligent ..., 2C
... IV. SHADOW SUPPRESSION IN SAKBOT Sakbot i
ob- ject detection and tracking; it is currently tested for
a ... The Sakbot acronym derives from the model we u
Cited by 560 Related articles All 9 versions Cite

Reliable background suppression for cc
S Calderara, R Melli, A Prati, R Cucchiara - ... worksht
Abstract This paper describes a system for motion dett
suppression, specifically conceived for working in cor
background, camouflage, illumination changing, etc..
Cited by 56 Related articles All 5 versions Cite S

Detecting objects, shadows and ghosts in
information

R Cucchiara, C Grana, M Piccardi... - Image Analysis

... it Dip. Ingegneria - University of Ferrara, via Saraga’
it 2 Abstract Many approaches to moving object detect
surveillance proposed in the literature are based on ba
Cited by 165 Related articles All 12 versions Cite

Robust techniques for background subtr:
SC Sen-Ching, C Kamath - Electronic ..., 2004 - proce
... background modeling techniques like MoG and apy
On the other hand, suppressing moving shadow is mur
luminance-only video. A recent survey and comparisol
Cited by 672 Related articles All 15 versions Cite

ViBe: A universal background subtractior
O Barnich... - Image Processing, IEEE ..., 2011 - ieee:
... Simnle motion detection alaorithms comnare a static

(a) Input image (b) S&KB background (c) Shadow detection (d) MVOs extracted

Fig. 4. Examples of Sakbot system in urban traffic scene

suppression

(d) Detection w/o shadow suppression (e) Shadow detection (f) Detection with shadow suppression




BACKGROUND INITIALIZATION

Fast Background Initialization with Recursive Hadamard Transform

AVSS 2010

Figure 4: Examples from two VISOR and two CAVIAR videos: (A,B) two random frames, (C) Estimated background us

NN
O
2

Davide Baltieri, Roberto Vezzani, Rita Cucchiara

c
©
o
Table 3: TimipgQvults
\& Frame Background
. (\Cb\.lpdate (ms) | Estimation (ms)
Median__ &Y 46 3133
DCT-based Mo@&l [14¢G 29 1506
HO O 36 97
v Q‘O
Table 4: Averaged results using CAVIAR dataset
Average | Clustered
error error pixels
Median 16.00 5451
DCT-based Method [14] | 14.12 3822
RHT 12.55 2334

Table 5: Averaged results using ViSOR dataset

Average | Clustered
error error pixels
Median 11.080 1929
DCT-based Method [14] 13.55 1807
12.62 968

the median filter, (D) using the DCT based method of Reddy et al. ( [14] ), (E) Our proposed enhanced method




BACKGROUND SUPPRESSION NEWS

very few news

A modified Gaussian mixture background model via spatiotemporal
distribution with shadow detection H Xia, S Song, L He - Signal, Image
and Video Processing, 2016 — Springer

Background Subtraction Methods in Video Streams: A Review

Saba Joudaki, Mohd Shahrizal bin Sunar, Hoshang Kolivand, Dzulkifli bin
Mohamad JSCDSS 2016 Malaysia (!)

Many improvements for technical engineering applications
Very few top-rank publications in the last five-years

(See google scholar)

Good commercial solutions

If you work we static cameras.... Use it!


http://link.springer.com/article/10.1007/s11760-014-0747-z
http://link.springer.com/article/10.1007/s11760-014-0747-z

B) WHEN OBJECT MODEL IS KNOWN...
C) WHEN IT IS LEARNED

Detectors
People detectors (and other targets)

Pedestrian detectors a long story...

* Detectors: Dalal, Triggs CVPRO5, Felzenszwalb, CVPROS, Gavrila et al
1JCVO8, PAMIO9

 Benchmarks: Dollar et al CVYPRO9

 Search modes Lampert et al CVPROS8

* Detection in crowd Ge Collins PETS09
 Detection and tracking in crowd Rodriguez ICCV11
e Survey Dollar et al TPAMI11

Improving speed and accuracy
Multi-Stage Particle Windows for Fast and Accurate Object Detection

[Gualdi, Prati Cucchiara TPAMI11]
form siliding windows to particle window search for people and other targets



DETECTING PEOPLE

Improving speed and accuracy

Multi-Stage Particle Windows for Fast and Accurate Object Detection
[Gualdi, Prati Cucchiara TPAMI 2011]

from siliding windows to particle window search for people and other targets

r

f_

L

4 ? \




AN EGOCENTRIC VIEW
PEOPLE DETECTION IN AUTOMOTIVE

Complex task with very limited performance in real scenarios
Reasonable automotive dataset (Caltech USA)

4 Challenges

Figure size:
Far pedestrians appear very small in the image. EG, with VGA resolution and 36deg vertical
FOV, the figure of a 1m height child at 30 meters is only 25 pixels long.

Fast dynamics:
The detection latency must be small, and decisions must be obtained within a few frames.

Heavy clutter:
Pedestrian detection is typically taking place at urban scenes with a lot of background

texture.

Articulation:

Pedestrians are non-rigid objects, spanning high variability in appearance and cause
tracking difficulties.



PEOPLE DETECTION EXPERIMENTS

3 main approaches in literature

Part Based Models: People body is a collection of part dteected
separately al latent variables [Felzenszwalb 2010]

Pros: Robust to occlusions, Accurate <15 % miss rate per-
image
Cons: Slow approx 10fps, Need retrain, Need high resolution

Deep network Models: A conv-net is usuallly trained learning both
features and classification functions [Anelia 2015]

Pros: Fast 25fps, Flexibles, Accurate <20% miss rate per-image,
easy retrain, hardware implementation

Cons: Scale dependent, Need many data for training, No T
control over the model, High resolution

0000000 -

Standard feature/classification holistic models [Dollar 2014]

Pros: Scale invariant, Fast approx 30 fps, Features are
handcrafted, Flexible and controllable model performances

Cons: Less accurate approx 30% miss rate per-image, must
select features, speed depend on features extraction and
number of scales



RESEARCH PERFORMANCE ON CALTECH DATASET

Performance Re port from [Benen50n2014] Ten Years of Pedestrian Detection,
What Have We Learned?
No perfect method
. . . . . . Rodrigo Benenson Mohamed Omran Jan Hosang Bernt Schiele
Still impossible to have NO FP at satisfying miss M s Tttt fo Tnfwenatic
Saarbriicken, Germany

rate firstname.lastname@mpi-inf.mpg.de ECCV 2014

Still impossible to achieve 0 MR per image

Performance are evaluated on image

independently. Miss Rate MR

1 _'—__ﬁ‘—-x\ ............ e e o
Google requirement for self driving carisa 0,07 sec g4} ; -
response of the system BOp S RX
40p 94.73% VJ Ny T

g0}~ 88.46% HOG | ey
Current fastest method SDN 10fps accuracy 60% ——— 63.26% LatSvm-V2
Current most accurate method Katamari accuracy 20F  S314%DBN-sol - N g B

m 50.17% Ours—SquaresChnFirs (|

80% 5fps 48.35% Roerei
——— 37.87% SDN _
10} 37.64% MT-DPM+Context - o W ;
: m— 14.81% Ours—-SquaresChnFtrs (C) :
GOOGLE latest method DEEPCASCADE[Anelial5] 24 B0 o W
Accuracy 70% 15 fps = === 31 28% Ours—SquaresChnFrs+DCT

05t = === 30.34% Ours-SquaresChnFtrs+SDt
: 29.42% Ours-SquaresChnFtrs+2Ped
p— 22 49% Ours—Katamari-v1

10° 10?10 10° 10

False Positive per image FP



Arxiv 2016

| Function |

Large-size Sub-network

L_conv Lfe6 L_fc7 L _cs_score

Rol / U
pooling
U L_bbor_pre
. —
/ ol
b
512

Y/ 4096 409 8 : 2 2

Best now on caltech

Scale-aware Fast R-CNN for Pedestrian Detection

Jianan Li, Xiaodan Liang, ShengMei Shen, Tingfa Xu, and Shuicheng Yan

cs cls
score prob

A
\\\ bbox_pred
oW H
Y
A
Y
!
)
L)

miss rate

24.80% LDCF
22.49% Katamari
""" 21.89% SpatialPooling+
""" 20.86% TA-CNN

| s 18.47% Checkerboards

11.75% CompACT-Deep
— 9.68% SAF R-CNN

T T

10° 10° 10" 10° 10’

false positives per image



NEW DNN APPROACHES FOR AUTOMOTIVE

Top scorers on Kitty Benchmark:
 Combine CNN and Region proposals
* DO not treat People explicitly. Detect People Cars and Objects

simoultaneously -> Exploits generalization capability of CNN filters
* Use 3D when available

3D Object Proposals for Accurate Object Class Detection@
NIPS2015

Exploit All the Layers: Fast and Accurate CNN Object Detector

with Scale Dependent Pooling and Cascaded Rejection Classifiers
@CVPR16



PEOPLE DETECTION SOLVED?

ICCV 2013

CVPR 2016

Learning People Detectors for Tracking in

Crowded Scenes.
S. Tang, M. Andriluka, A. Milan, K. Schindler, S.
Roth, B. Schiele

How Far Are We From Solving Pedestrian
Detection?.

Shanshan Zhang, Rodrigo Benenson, Mohamed
Omran, Jan Hosang, Bernt Schiele CVPR2016



NEXT TRENDS

FROM

Detecting in the space

: ) = Tracking in the time
(localize and recognize) \

TO

Saliency and o _
ODJECINESS s 11ACKING N the time

l

Recognition




OBJECT DISCOVERY AND TRACKING

A co-working approach
Object discovery
And tracking

nating in r,y1. A spatio-temporal tube is any sequence
r = [rq,...,ry| of temporal neighbors in the same video.
Our goal is to find, for every video v in the input collection,
the top tube r according to the criterion

T-1

T
D(r) =D @lresve, N)] + A D $(r,riga), (1)
t=1 t=1

where @[r;, v¢, N(v;)] is a measure of confidence for r; be-
ing an object (foreground) region, given v; and its matching
neighbors, and (¢, r¢+1) is a measure of temporal con-
sistency between 1, and 1;.1; A is a weight on temporal
consistency.

ICCV2015

Unsupervised Object Discovery and Tracking in Video Collections

Suha Kwak'**  Minsu Cho™*  Ivan Laptev*  Jean Ponce®*  Cordelia Schmid"

Inria ?Fcole Normale Supérieure / PSL Research University

Object Discovery across Videos Tracking Object within Video




OBJECT DISCOVERY AND TRACKING (CONT)

K

Motion coherency

max max
(b) Measuring the motion coherence score for a box.

— vy,

»
7°
1
/]

(a)
Figure 5. Visualization of examples that are correctly localized by our full method: (red) our full method, (green) our method without
motion information, (yellow) ground-truth localization. The sequences come from (a) “aeroplane”, (b) “car”, (c) “cat”, (d) “dog”, (e)
“motorbike”, and (f) “train” classes. Frames are ordered by time from top to bottom. The localization results of our full method are spatio-
temporally consistent. On the other hand, the simpler version often fails due to pose variations of objects (a, c—f) or produces inconsistent
tracks when multiple target objects exist (b). More results are included in the supplementary file. (Best viewed in color.)



Spatial Coherence:
Segmentation/Detection

]
Temporal coherence:

Tracking

4.RE-IDENTIFICATION




PEOPLE RE-IDENTIFICATION

People re-ID two scopes:
1) Long-time memory: Search in galleries/whatching list etc: soft-biometry

2) Short-time memory: used in multi-target tracking with not overlapped
cameras or occlusions or if the frames are not continuous?

Answer to many questions

Where i’ve just seen this person?
Where is he/she going?

s this people appeared more time?

[R.Vezzani, D.Baltieri, and R.Cucchiara.
People reidentification in surveillance and
forensics: A survey. ACM Comput. Surv.46,
2, Article 29 (December 2013)]




PEOPLE RE-IDENTIFICATION

People
Re-identification

Search for similarity : i
T & slkfin chisbass of Extension of the tracking
P problem (in videos)

images and videos)

As a component in the tracking problem,

* re-identification aims at finding an association between prediction and
observation.

* |t supposes that a spatio-temporal coherence of the target position and
appearance is satisfied, but there are some blind spatio-temporal area.

e it matches a previously seen target if it appears again in the same camera,
after a short time, in a position close to the previous one, and with a
similar appearance.



A MULTI-DIMENSIONAL SPACE

[Signature]
[Body model]

[Sample set]

soft-biometry

[Machine Learning]

position

[Application scenario]

- 5
7

long-term tracking

short-term tracking image retrieval




SDALF for person re-identification

Symmetry-driven accumulation of local features for human characterization and
re-identification

L. Bazzani, M. Cristani, V. Murino

Computer Vision and Image Understanding (CVIU), 2013.

SDALF code / bibtex

FEATURES

Person re-identification by symmetry-driven accumulation of local features
M. Farenzena, L. Bazzani, A. Perina, M. Cristani, V. Murino

In Conference on Computer Vision and Pattern Recognition (CVPR), 2010

SDALF code / video / bibtex

N ]

SALF-based features

Now reference method for approaches using color and shape

Figure 1: Sketch of the proposed descriptor. (a) Given an image or a set of images, (b) SDALF localizes meaningful body parts. Then, complementary aspects of
the human body appearance are extracted: (c) weighted HSV histogram, represented here by its (weighted) back-projection (brighter pixels mean a more important

color), (d) Maximally Stable Color Regions [1] and (e) Recurrent Highly Structured Patches. The objective is to correctly match SDALF descriptors of the same
person (first column vs. sixth column).



3D RE-IDENTIFICATION

Data driven model: 3D to 3D or 2D to 3D Model match

Baltieri, Davide; Vezzani, Roberto; Cucchiara, Rita "Mapping Appearance Descriptors on 3D Body Models for
People Re-identification"International Journal of Computer Vision, INTERNATIONAL JOURNAL OF
COMPUTER VISION, vol. 111, pp. 345 -364 , 2014



http://imagelab.ing.unimore.it/imagelab/publicationSheet.asp?idpublication=8

(b)

Fig. 2 Different snapshots of the same pedestrian viewed by
a network of cameras, under varying light conditions
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RE-IDENTIFICATION: EXAMPLES

Better (only if you have tracking, already)

Cumulative Matching Characteristic (CMC)
100 T T

: : : —+— SDALF
1 I} SRR .................. .................. ............. sARCID M

g0

f0F

60

S0

40

30

20

10F

o

Davide Baltieri, Roberto Vezzani, Rita Cucchiara, 3DPeS: 3D People Dataset for Surveillance and Forensics
Ws MA3CHO, ACM Multimedia 2011



3D ISBETTER

For typically 3D objects with different shape in different views, as
persons are.

Also with Kinect based or camera based re-identification




3D FEATURES
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NEW FEATURES AND APPROACHES

CVPR 2016

=

Human ID

50 Recurrent Attention Models for Depth-Based Person Identification.
Albert Haque, Alexandre Alahi, Li Fei-Fei

51 Learning a Discriminative Null Space for Person Refldentification.
Li Zhang, Tao Xiang, Shaogang Gong

52 Learning Deep Feature Representations With Domain Guided Dropout for Person Re-ldentification.
Tong Xiao, Hongsheng Li, Wanli Ouyang, Xiaogang Wang

53 How Far Are We From Solving Pedestrian Detection?.

Shanshan Zhang, Rodrigo Benenson, Mohamed Omran, Jan Hosang, Bernt Schiele

54 Similarity Learning With Spatial Constraints for Person Re-ldentification.
Dapeng Chen, Zejian Yuan, Badong Chen, Nanning Zheng

55 Sample-Specific SVM Learning for Person Re-ldentification.
Ying Zhang, Baohua Li, Huchuan Lu, Atshushi Irie, Xiang Ruan

56 Joint Learning of Single-lmage and Cross-lmage Representations for Person Re-ldentification.
Fagiang Wang, Wangmeng Zuo, Liang Lin, David Zhang, Lei Zhang

57 A Multi-Level Contextual Model For Person Recognition in Photo Albums.
Haoxiang Li, Jonathan Brandt, Zhe Lin, Xizohui Shen, Gang Hua

58 Unsupervised Cross-Dataset Transfer Learning for Person Re-ldentification.
Peixi Peng, Tao Xiang, Yaowei Wang, Massimiliano Pontil, Shaogang Gong, Tigjun Huang, Yonghong Tian

59 Pedestrian Detection Inspired by Appearance Constancy and Shape Symmetry.
Jiale Cao, Yanwei Pang, Xuelong Li

40 Recurrent Convolutional Network for Video-Based Person Re-ldentification.
Niall McLaughlin, Jesus Martinez del Rincon, Paul Miller

61 Person Re-ldentification by Multi-Channel Parts-Based CNN With Improved Triplet Loss Function.
De Cheng, Yihong Gong, Sanping Zhou, Jinjun Wang, Nanning Zheng

42 Top-Push Video-Based Person Re-ldentification.
Jinjie You, Ancong Wu, Xiang Li, VWei-Shi Zheng

63 Improving Person Re-ldentification via Pose-Aware Multi-Shot Matching.
Yeong-Jun Cho, Kuk-Jin Yoon

&4 Hierarchical Gaussian Descriptor for Person Re-ldentification.
Tetsu Matsukawa, Takahiro Okabe, Einoshin Suzuki, Yoichi Sato



Learning Deep Feature Representations with Domain Guided Dropout for

Tong Xiao

Person Re-identification

Hongsheng Li

Wanli Ouyang

Xiaogang Wang

Department of Electronic Engineering, The Chinese University of Hong Kong
{xiaotcng, hsli,wlouyang, xgwang}@ee .cuhk.edu.hk

E: PRID

Domains
A: iLIDS
B: CUHKO1
C: CUHKO3
D: VIPeR

F: 3DPeS

Jointlearning

Fine-tuning with Domain Guided Dropout

- A

—>B

Figure 2. Overview of our pipeline. For the person re-identification problem, we first train a CNN jointly on all six domains. Then we
analyze the effectiveness of each neuron on each domain. For example, some may capture the luggages that only appear in domain A,
while some others may capture the red clothes shared across different domains. We propose a Domain Guided Dropout algorithm to
discard useless neurons for each domain during the training process, which drives the CNN to learn better feature representations on all the
domains simultaneously.

atch size/ output #3x3 double #3x3 | double .
namme . stride sife L reduce a3 reduce #3x3 poatiproj
input 3 % 144 x 56
convl —conv3 | 3 x3/2 32 x 144 x 56
pool3 2:%2/2 320%!72% 28
inception (4a) 256 x 72 x 28 32 32 32 32 32 avg + 32
inception (4b) stride 2 384 x 72 x 28 32 32 32 32 32 max + pass through
inception (5a) 512 x 36 x 14 64 64 64 64 64 avg + 64
inception (5b) stride 2 768 x 36 x 14 64 64 64 64 64 max + pass through
inception (6a) 1024 x 36 x 14 128 128 128 128 128 avg + 128
inception (6b) stride 2 1536 x 36 x 14 | 128 128 128 128 128 max + pass through
fc7 256
fc8 M

Table 1. The structure of our proposed CNN for person re-identification




#1rn. #Val. #Prb. #Gal.

Dataset #ID . :
images  images D ID

CUHKO3 [27] 1467 21012 5252 100 100
CUHKOT [21] 971 1552 388 485 485

Current dataset used PRID [ 15] 385 2997 749 100 649
VIPeR [ 1 7] 632 506 126 316 316
3DPeS [5] 193 420 104 96 96
i-LIDS [50] 119 194 48 60 60

Shinpuhkan [ 5] 24 18004 4500

Table 2. Statistics of the datasets and evaluation protocols

Method CUHKO03 CUHKO1 PRID
Best 62.1[32] 5341321 17.9[22]
Individually 72.6 34.4 37.0
ISTL 72.0 62.1 59.0 Learning Deep Feature Representations with Domain Guided Dropout for
ISTL+DGD 72.5 63.0 60.0 Person Re-identification
FT-JSTL 74.8 66.2 57.0 e N
= : : ong Xiao ongsheng Li anli Ouyang iaogang Wan,
FT-JSTL+DGD 75.3 66.6 64.0 Departilent of Electron;gc Enggineering, The Chinbel:se University of Hgong K%)ng
{xiaotong,hsli,wlouyang,xgwanq}@ee.cuhk.edu.hk
Method VIPeR 3DPeS 1LIDS
Best 459 [32] 5420411 52.119]
Individually 12.3 31.1 21.5
JSTL 35.4 44.5 56.9
JISTL+DGD 37.7 45.6 59.6
FT-JSTL 37.7 54.0 61.1
FT-JSTL+DGD  38.6 56.0 64.6

Table 3. CMC top-1 accuracies of different methods



Spatial Coherence:
Segmentation/Detection

Feature extraction
(Appearance Patterns,
Motion, Depth, Shape,

Texture, Trajectory..)
Re-identification

Temporal coherence:
Tracking

5.LET’S GO TO TRACKING




ENVIRONMENTAL VS EGOCENTRIC VIEWS

Surveillance Eyewear cameras

Building automation Automotive




AFTER DETECTION... TRACKING!

Environmental

View

Static (multiple) cameras

Large view

Large resolution

Small target size

Crowd situation

Total/partial occlusions
Re-identification in multicamera

|d switch problem

Egocentric

View

Moving (single) camera
Short-distrorted view
Large/small resolution

Large target size

Speed real-time constraints
Frequent partial occlusions
Re-identification after occlusions

Frag problem




SINGLE TARGET TRACKING

D 1. Region of interest
D 2. Data Representation: how to observe invariant and variant features in the frame and
D 3. Model Representation how to hold them in an internal representation
D 4. Inference Method
5. Model Update
_ I Representation Method location
Video Appearance Similarity measuring,

A matching and
optimization

Representation v
Motion and position [ - Model Updating

Arnold W. M. Smeulders, Dung M. Chu, Rita Cucchiara, Simone Calderara, Afshin Deghghan and, and Mubarak
Shah, Visual Tracking: an Experimental Survey, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2014.



http://crcv.ucf.edu/papers/trackerSurvey.pdf

ALOV300++ DATASET

http://imagelab.ing.unimore.it/dsm/
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http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=2
http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=3
http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=4
http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=5
http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=6
http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=7
http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=8
http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=9
http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=10
http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=11
http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=12
http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=13
http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=14
http://imagelab.ing.unimore.it/dsm/index.php/component/dsmanager/?task=showcategory&cid=15

PERFORMANCE EVALUATION SINGLE
TARGET

The upper bound, taking the

About the 30%, correctly tracked only best of all trackers at each

frame 10%
1.04

=©-NCC(0.57)

—KLT(0.47)
= KAT(0.43)

|—FRT(0.52)

==-MST(0.36)

|==LOT(0.52)

IVT(0.55)
TAG(0.38)
TST(0.62)
TMC(0.15)
ACT(0.27)
L1T(0.56)
L10(0.60)

‘| ——FBT(0.64)

7= HBT(0.49)
—SPT(0.47)
=B=MIT(0.57)

|| =—=TLD(0.61)

~€-STR(0.66)

50 100
The lower bound, what all

trackers cando 7% Survival curves by Kaplan-Meijer

Video

Prediction and
Matching based

-

Discriminative

E_a




A.

B.

C.

D.

E.

COMPARED METHODS

Tracking by Matching
[NCC] Normalized Cross-Correlation . [FRT] Fragments-based Robust Tracking
K. Briechle and U. Hanebeck, SPIE 2001 A. Adam, E. Rivlin, and I. Shimshoni, CVPR2006
[KLT] Lucas-Kanade Tracker [MST] Mean Shift Tracking
S. Baker and I. Matthews, 1JCV2004 D. Comaniciu, V. Ramesh, and P. Meer, CYPR2000
[KAT] Kalman Appearance Tracker «  [LOT] Locally Orderless Tracking
H. Nguyen and A. Smeulders, TPAMI 2004 S. Oron, A. Bar-Hillel, D. Levi, S. Avidan, CVPR2012
Tracking by Matching with extended model (ST memory)
[IVT] Ingremental Visual Tracking e [TST] Tracking by Sampling Trackers
D. Ross, J. Lim, and R.S.Lin, 1JCV2008 J. Kwon, K.M. Lee, 21CCV 011

[TAG] Tracking on the Affine Group

J. Kwon and F.C. Park, CVPR2009
Tracking by Matchlng with constralnts . [L1T] Li-minimization Tracker
[TMC] Tracking by Monte Carlo sampling X. Mei and H. Ling, ICCV2009

J. Kwon, K.M. Lee,CVPR 2009
’ . . *  [L10O] L1 Tracker with Occlusion detection
[ACT] Adaptive Coupled-layer Tracking X. Mei, H. Ling, Y. Wu, E. Blasch, L. Bai, CVPR2011

L. Cehovin, M. Kristan, A. Leonardis, ICCV2011

Tracking by Discriminant Classification [FBT] Foreground-Background Tracker

[MIT] Multiple Instance learning Tracking H. Nguyen and A. Smeulders, 2006, 1JCV2010
B. Babenko, M.H. Yang, and S. Belongie, CVPR2009 . [HBT] Hough-Based Tracking
[TLD] Tracking’ Learning and Detection M. Godec, P.M. Roth, H.Bischof, ICCV2011
Z. Kalal, J. Matas, and K. Mikolajczyk, CVPR2010 [SPT] Super Pixel tracking
. . ey S. Wang, H. Lu, F. Yang, M.H. Yang, ICCV2011
Tracking by discriminant Classification e, T Tene T Tene
with constraints * [STR] STRuck

S. Hare, A. Saffari, P. Torr, ICCV2011




INFERENCE METHODS

1) Tracking as an inference task (with a statistical model)

* Define the object model as the object status; that is the appearance and
motion representation

* Define the status evolution and the status prediction (linear, non linear
unknown etc) during the time

* Define the data matching, i.e. the measurement of the prediction against the

current data and the status correction DED

2) Tracking as a model based search and a pattern recognition task

 Define the object model (appearance, segmentation, with foreground,
texture..) and possibly a non object model

* Define the search space ( everywhere or according with a prediction)
 Define the discriminative classifier for the association method and the

memory update
L2




CLASSICAL REPRESENTATION

*[¥

(@) (b) (©

88888888

Appearance representation: (a) 2D-Array ([10]); (b) Histogram: (c) Feature vector.

: () (h) (i)
Appearance representation
. Fig. 1. Object representations. (a) Centroid, (b) multiple points, (c) rectangular
M OtIOI’] M Ode|S patch, (d) elliptical patch, (e) part-based multiple patches, (f) object skeleton, (g)

complete object contour, (h) control points on object contour, (i) object silhouette.

* . °0. /

(+ ]+

o0 oe
4]

Fig. 4: Motion models used in tracking. From left to right: uniform search, Gaussian motion

model, motion prediction, implicit motion model, and tracking and detection.




MOVING CAMERAS AND EGOCENTRIC

TLD is
very robust

Light

Surface Cover
Specularity
Transparency
Shape

Motion smoothness
Motion coherence
Clutter

Confusion

Low Contrast
Occlusion

Moving camera

Zooming camera

[T
I




EGOCENTRIC VISION

Tracking and re-identification

fast head movement, blur, illumination changes, the trackers results in being
extremely short-living.

Egocentric Object Tracking: an Odometry-Based Solution, Stefano Alletto, Giuseppe Serra, Rita
Cucchiara, International Conference on Image Analysis and Processing, 2015




IMPROVING TLD IN EGOCENTRIC VIEWS




NEW APPROACHES

Motion model with instance proposal CVPR 2016

Beyond Local Search: Tracking Objects Everywhere with Instance-Specific
Proposals

Gao Zhu', Fatih Porikli'**, and Hongdong Li'*3
Australian National University' and NICTA?
ARC Centre of Excellence for Robotic Vision®
{gao.zhu, fatih.porikli, hongdong.li}@anu.edu.au *

(a) Frame ¢ (b) Frame t + 1

Figure 1: Top row: Most existing tracking-by-detection
methods examine hypothesis locations within a local and
heuristically defined search window around the last detected
location. Bottom row: Our tracker seeks high-quality hy-
potheses over the entire image using instance-specific edge-
box locations.




6...TO MULTIPLE-TARGET TRACKING...




Single target tracking is difficult.
Multi-target tracking is MORE difficult




«CLASSIC APPROACHES» MULTI-SINGLE TARGET TRACKING

Multiple overlapped cameras, multiple target (static cameras)
1. Tracking single objects in each FoV
2. Defining overlapped field of views

3. Using geometric contraints (epipolar lines)
4

Improve with statistical inference

S. Calderara, R. Cucchiara, A. Prati,"Bayesian-competitive Consistent Labeling for People Surveillance« in IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30, n. 2, pp. 354-360, 2008



http://imagelab.ing.unimore.it/imagelab/publicationSheet.asp?idpublication=208

MULTIPLE SINGLE TARGET TRACKER




MULTIPLE TARGET TRACKING

Data ( the video frames and the world) Inference
! Visual features ! Data association

Target

1) Stocastic MTT

2) Tracking-by-detection: data
association

3) So0A methods




MULTI-TARGET TRACKING IS DIFFERENT!

STT: the state of only one target is modelled:
Constraints:
* detections from other targets are assumed to be false alarms

e problems are occlusions

MTT: it takes the existence of more than one target into account simultaneously
in their measurement association processes for closely-spaced and crossing
targets.

Constraints:

* only one measurement is assumed to be produced by each target at a given
time

e the targets are assumed to have independent dynamics.




THE CLASSIC METHOD: STOCHASTIC MTT

If tracking is considered a stochastic prediction of the target state ~1§Q
o
MTT can be an extension of STT &
é\c;"‘
N3

The target is represented by o

@
- the target state Ny

Xr =[xk, Vi, VX, VY] the (motion) state

xapp;, = [hyg, Wi, Fr, ....]7 the appearance model

The global state X takes into account the union of xk




STOCHASTIC MTT

- The state evolves during the time

- The dynamic nature is a process model, an in particular a Hidden Markov
process , normally of the first order Markov chain

Xt = Fr(Xee—1, Qre—1)
First order Markov chain (k omitted)
p(Xt|xi—1) = p(Xe|xp—1, X2, -+, X1)

The observations

e = utee e ]

It is a possibly non-linear function that translates from the state space to the
observation space

The noise sequences gk,t—1 and rk,t are assumed to be mutually independent
and identically distributed (i.i.d), and also independent of xk,t and zk,t
respectively




STOCHASTIC MTT

likelihood

(what measurement would we expect
to see if we knew the model?)

Bayesian posterior N\, (Xlz) — u% \p(—X)/ (OUP“EE’?VLdge
Model (wnl]lgéesl ;;le p / ZZ?ELZT?%

normalization
p(z) = ]X p(z[x) p(x)dx

Treat tracking problem as a first order Markov process

m  Estimate p(x, | z, X4)
m  Combine Markov assumption with Bayes Rule

p(xt|ze, Xp—1) o< p(Z¢|x¢) p(Xe|xp—1)

Inference is given by / D \

prediction and matching measutement likelihood prediction

(likelihood of seeing (based on previous
this measurement) frame and motion model)




MONTECARLO

p(Xk|Zk ) = Kp(zk|xk )j p(xk|xk—1) p(xk—1|zk—1)dxk—l

Vonte Carlo characterization of pdf:

* Represent posterior density by a set of random i.i.d. samples (particles)
from the pdf p(xy.|z,4) ( the prioriin the previous frame)

* For larger number N of particles equivalent to functional description of pdf;
For N—oo approaches optimal Bayesian estimate

Regions of high density | N
* Many particles <1 @

v or oY ‘ y Y \

* Large weight of particles lie @ @' 4 o

Uneven partitioning

N
Discrete approximation for continuous pdf | Py (Xg; | 2y, ) = ZWtI O(Xox = Xox)
=)




i=1,...,N=10 particles ;

unweighted measure 5 9 B @ o ooo
|

o o {Xt-l’N-I}

D

compute importance

weights = p(X.1 | 2..1) KO GOy

X 1:We

N R——
-,
o ;
-
O-—0 -
L

resamplin L 3 NI
p g o o & Pt }
‘I ." ln"'.] II.
!I 1y (j'(! 1 1 l 1 {;(-(i) N-l}
5 $ &3 14 m

move particles

vorr v vy 7O )

predlCt p<Xt | Zl:t—l) P (T Y ® X Wy




BRAMBLE

Extended to MTT
(Bramble , “ayesian '/ultiple-~' ob Tracker, Misard, ] MacCormick 2003)

The state is the state of MULTIPLE TARGETS

p(X | £, Z 4, Zy)

State at frame t Image Sequence

Number,
Positions,
Shapes,

Velocities,




MTT BRAMBLE

Observations are conditionally independent ( butis it true??)

p(Z|X) =] |, p(z( I X)

The state is a single state with a fixed number of target




PARTICLE FILTERING ON MTT

Bramble approach

BUT Stocastic models with a unique status are suitable for few targets

- Fixed number of target

- Many parameters, - Without detection, large possibility of drift



MULTIPLE SINGLE TARGET TRACKERS VS
MULTI-TARGET TRACKER

Multiple STT MTT
Need a parallel Depends on the detector
implementation performances...
Keep a model for each Will get better as detectors
pedestrian will improve!
Terribly slow Rarely seen online
. Association and optimization
Online
methods work really well




MULTIPLE SINGLE TARGET TRACKERS VS
MULTI-TARGET TRACKER

is LOCAL is GLOBAL

and after only a few frames
the single trackers concentrates around the most responsive pedestrians

ldaweil (~60 ped.) ljapancross2 (~120
ped.)




MULTIPLE SINGLE TARGET TRACKERS VS
MULTI-TARGET TRACKER

QUANTITATIVE EVALUATION (MOTA/MOTP)

1daweil ljapancross2

CEM* 2014 96% / 0.25m 79% / 0.45m |

- MTT
CMPT* 94% / 0.15m 82% / 0.50m |
TLD** 68% / 0.40m 59% / 0.60m 1 MSTT
STRUCT** 44% / 0.70m 29% / 1.20m [

The multiple single trackers rapidly drift as the crowd moves.

Many pedestrians are still tracked as the crowd often moves homogeneously, so
nearby pedestrians help in keeping the bounding box near the target — but what
are we really tracking then?

* we used Dollars’ detector which, appropriately trained, yielded an error of about 20%
P. Dollar, R. Appel, S. Belongie and P. Perona

Fast Feature Pyramids for Object Detection, PAMI 2014

** initialization was done manually for each pedestrian




MTT BY DETECTION:
A DATA ASSOCIATION PROBLEM




MULTIPLE TARGET TRACKING

Most cited MT-Trackers published before 2014

* Discrete-Continuous Optimization for Multi-Target Tracking
Anton Andriyenko, Konrad Schindler and Stefan Roth, 2012
http://www.gris.informatik.tu-darmstadt.de/~aandriye/dctracking.html

*  Global Multi-object Tracking Using Generalized Minimum Clique Graphs
Amir Roshan Zamir, Afshin Dehghan and Mubarak Shah, 2012
http://crcv.ucf.edu/projects/GMCP-Tracker/

e Continuous Energy Minimization for Multi-Target Tracking CEM
Anton Andriyenko and Konrad Schindler, 2014
http://www.gris.informatik.tu-darmstadt.de/~aandrive/contracking.htm|

*  Multiple Object Tracking using K-Shortest Paths Optimization
J. Berclaz, F. Fleuret, E. Turetken and P. Fua, 2011
http://cvlab.epfl.ch/software/ksp

e Continuous Energy Minimization for Multi-Target Tracking
A. Milan, S. Roth and K. Schindler, TPAMI 36(1), 2014

What do they all have in common?
They are data association techniques that work on already detected pedestrians.



http://www.gris.informatik.tu-darmstadt.de/~aandriye/dctracking.html
http://crcv.ucf.edu/projects/GMCP-Tracker/
http://www.gris.informatik.tu-darmstadt.de/~aandriye/contracking.html
http://cvlab.epfl.ch/software/ksp

IT'S A DATA ASSOCIATION PROBLEM

A o
\ A H e @
track 1 ‘\ - )
- - .
A
i*._____A ®
) ——-A ®
V4
/7
track 2 ’,D/ observations
--

How to determine which observations
to add to which track?

Courtesy of B.Collins




FILTERING, GATING AND ASSOCIATION

1) FILTERING

* Prediction: propagate state pdf forward in time, taking process noise into
account (translate, deform, and spread the pdf) .

E A\ ‘D——--‘D—-‘_ﬂ
track 1 ‘\ ,l:l'” 9
\‘A_ .

lﬁ‘“*‘-——-i————&.
track 2
D_‘_,

4
o’ observations

2) GATING AND ASSOCIATION

* Gating to determine possible matching observations :

. Data association to determine best match

]

 Update: use Bayes theorem to modify prediction pdf based on current
measurement




GATING

Match should be close to predicted values

A
some matches are track 1 \
highly unlikely
track 2 o 4 observations
-
d
A\ T e
track 1 -7 <
A | ?
DIFFEREENT STRATEGIES R N
OF ASSOCIATION / T
track 2 D" observations




GATING

A method for pruning matches that are geometrically unlikely from the start.
Allows us to decompose matching into smaller subproblems.

— Divide and conquer!

. gating )
A region ‘
\ rr--The € ~
track 1 ‘\ T -
AL/
= _ A o
— —_— o ﬁ ..)
," gating i
k 2 /, region 1
trac [T observations




MTT AS A DATA ASSOCIATION MODEL

Studied in the field of radar technology 30 years ago

Three major categories

1. Nearest neighbor (NN) online
2. Joint probabilistic data association (JPDA) on a gating window
3. Multiple hypothesis tracking (MHT) on the overall data

NN and JPDA work in a single scan of the dataset

Greedy approach: in each timestamp, every sample is associated with a single
track

Objective: minimize the error across all associations in the current timestamp

Performance:

* Efficient — can work in polynomial time
* Greedy approach results in many false associations




1. NN NEAREST NEIGHBOR

Evaluate each observation in track gating region. Choose “best” one to
incorporate into track

Alj is the score of matching j to track 1, based on:

Position
similarity of appearance

correlation scores...

= W e

ail




Prediction

Model association

X(t-1) X(t) X(t+1)

constant velocity
assumes V(t) = V(t+1)

@ > O »O
V() V(t+)

E—

2 * area(A and B)
area(A) + area(B)

— > score =

—

B

A = bounding box at time t, adjusted by velocity V(t)
B = bounding box at time t+1




Correlation of image templates 1s an obvious choice (between frames)

Extract motion blobs

For object in previous frame,
compute correlation score
with all blobs in current fram
Pick one with highest score
(suboptimal strategy).

IIR Filter {1 Update appearance
R,(2) ! - | template of blobs

(¢)

However, cross correlation 1s computationally expensive.




PROBLEMS

BUT after a switch no recover

if do independently for each track, it could end up with contention for the same
observations.

ail  ail

3.0
5.0
6.0 | 1.0
9.0 || 8.0
3.0

-t
-
-]
=
\\ [
AY
)
\
1
1
h & W N -

both try to claim
observation o,




LINEAR ASSIGNMENT PROBLEM
OR GLOBAL NEAREST NEIGHBOUR

Given N Target in a previous frame and M observation in the current frame

Choose a 1-1- correspondence 1 2 3 4 5

0.95 0.76 062 0.41 0.06
0.23 0.46 0.79 0.94 0.35
0.61 0.02 0.92 0.92 0.81
0.49 0.82 0.74 0.41 0.01
0.89 0.44 0.18 0.89 0.14

A WN -

Remember that there are 5x4x3x2c1=120 possibilities (N!)

Mathematical definition. Given an NxN array of benefits {X,;},
determine an NxN permutation matrix M,; that maximizes the
total score:

N N
maximize: E= Z Z MaiXai
a=1 i=1

‘\
j ; . A
subject to: Vi Za _, JM—(”: —1
.7 constraints that say
Ya Z i=1 M ai — 1 M is a permutation matrix
M € {0,1)

J



SOLUTIONS

Greedy strategy

The problem can also be viewed as a weighted bipartite graph, with nodes being
row/col indices and edges being weighted by the matrix entries Xai. Perhaps this
can be solved by mincut/maxflow? (polynomial complexity)

source sink

| weighted ﬂ Possible solution methods:
links Ford-Fulkerson algori 4«

ar




HUNGARIAN ALGORITHM

Hungarian algorithm

From Wikipedia, the free encyclopedia

The Hungarian algorithm is a combinatorial optimization algorithm which solves assignment problems in

polynomial time (O(n3)). The first version, known as the Hungarian method, was invented and published by
Harold Kuhn in 1955. This was revised by James Munkres in 1957, and has been known since as the Hungarian
algorithm, the Munkres assignment algorithm, or the Kuhn-Munkres algorithm. In 2006, it was discovered
that Carl Gustav Jacobi had solved the assignment problem in the early 19th century, and published

posthumously in 1890 in the Latin Ianguage.m

The algorithm developed by Kuhn was largely based on the earlier works of two Hungarian mathematicians:
Dénes Konig and Jend Egervary. The great advantage of Kuhn’s method is thaffit is strongly polynomial (see
Computational complexity theory for details). The main innovation of the algoritifm was o combine two separate
parts in Egervary’s proof into one.

hence the name

Again, courtesy of B.Collins




HUNGARIAN

0.95] 0.76

0.23 0.46
0.61 0.02

0.62 0.41 0.06

0.79

0.49 |0.82

0.89 0.44

permutation matrix computed
by Hungarian Algorithm

Improvements:

Murty’s K-best algorithm

0.92
0.74
0.18

0.94
0.92

|0.89

V.
0.01
0.14

score: 4.26

So far we know how to find the best assignment (max sum scores). But what if
we also want to know the second best? Or maybe the top 10 best assignments?




2. PDAF

Probabilistic Data Association Filter

Updating single track based on new observations.

General idea: Instead of matching a single best observation to the track, we
update based on all observations (in gating window), weighted by their
likelihoods.

Consider all points in gating window. Also consider

Use Kalman for prediction » .
alman for predictio the additional possibility that no observations match.

ail

1.0
3.0
5.0
6.0
9.0

trackl  __r---t

L e

7’
7/

]

p;; = “probability” of matching observation i to track 1
a

n )
Di—04dil

Pil =




JPDAF

Joint Probabilistic Data Association Filter If maintaining multiple tracks,
doing PDAF on each one independently is nonoptimal, since observations in
overlapping gate regions will be counted more than once (contribute to more
than one track). JPDAF reasons over possible combinations of matches, in a
principled way.

aARr AN W

Hypothesis Matrix for Example of Figure 6.3

/Track gates S0
3 Likelihood
Track Hypothesis (Normalized
Hypothesis  Number Likelihood Probability)
Number 1 2 p(H;) for Example
[ 0 0 (1= Py)?p° 2.4 % 10°%(0.011)
01, 02, 03 = Observation positions 2 1 0 gn Po(1 P“)/;" 1.82 % 10" (0.086)
P1, P2 = Predicted target position 3 2 0 01 P“(] pm/:/ 1.11 % 109 (0.053)
4 g 0 Gi3 Po(1 — Py)B? 4.1 %10 'f(()()l?h
5 B 2 g Po(1 — Po)p? 8.6 x 10°°(0.041)
6 1 2 g Pp 6.47 x 10" (0.306)
1 3 2 Q13022 Po 1.44 % 1079 (0.068)
8 0 3 gn Po(1 PU)/:? 6.7 <10 $(0.032)
_ 9 1 3 g9 Py B 5.04 % 105 (0.239)
=TI & Po T a-p) T B 10 2 3 G1202 P3 B 3.06 x 10-% (0.145)
Track i assigned Tracks assigned Unassigned TR 1A Y \ . |

to observation j to no match (0) observations ' \




JPDAF

Formally elegant but complex
using only a finite number of tracks

Called also tracking before detection, works on a fixed gating window (no online)

Tracking Multiple Interacting Targets Using
a Joint Probabilistic Data Association Filter

Arséne Fansi Tchango*", Vincent Thomas®, Olivier Buffet”, Alain Dutech” and Fabien Flacher*
*Thales Services SAS Company, Vélizy-Villacoublay, France
Email: firstname.lastname @thalesgroup.com
TINRIA / Université de Lorraine, Nancy, France
Email: firstname.lastname @loria.fr

Joint Probabilistic Data Association Revisited ICCV 2015

Seyed Hamid Rezatofighi' Anton Milan' Zhen Zhang® Qinfeng Shi' Anthony Dick! Ian Reid!
School of Computer Science, The University of Adelaide, Australia
“School of Computer Science and Technology, Northwestern Polytechnical University, Xian, China

hamid.rezatofighifadelaide.edu.au




3. MRT MULTIPLE HYPOTHESIS TRACKING

Multiple hypotheses are maintained

* Joint probabilities are calculated recursively when new measurements are
received

Each association is based on both previous and subsequent data (multiple scans)
Unfeasible hypotheses are eventually eliminated
Performance:

* Very accurate

* Computational and space complexity is exponential to the number of
measurements

Benfold, B., Reid, |.: Stable multi-target
tracking in real time surveillance video. In:
CVPR. (2011)

Multiple Hypothesis Tracking Revisited ICCV 2015

Chanho Kim Fuxin Li 1 Arridhana Ciptadi f James M. Rehg
T Georgia Institute of Technology T Oregon State University




MHT

1 2 >
scan t- B — hypothesis =
t1 assign each contact
i in each scan a target
\ number or 0 (FA)

t2
scan t (1 3 .
o =2t
t5 \

C\D S i
scan t+1 s t1 2
-—

= False Ala +




MHT

Combiatorial explosion

Rough order of magnitude on number of hypotheses:

Let’s say we have an upper bound N on number of targets
and we can associate each contact in each scan a number
from 1 to N. (we are ignoring false alarms at the moment)

N! N! N!
e e
(N-4)! (N-5)! (N-3)!




MHT WITH MITIGATION STRATEGIES

Clustering: can analyze each cluster cluster2
independently (e.g. on a separate processor) .

clusterl cluster3

combine MHT with Murty’s k-best assignment algorithm to maintain a
fixed set of k best hypotheses at each scan.
Cox et al TPAMI 96




MCMCDA

|dea: use Markov Chain Monte Carlo (MCMC) to sample from / explore the huge
combinatorial space of hypotheses.

S. Oh, S. Russell, and S. Sastry, 2004. Markov Chain Monte Carlo data
association for general multiple-target tracking problems. In Proc. IEEE Int.
Conf. on Decision and Control, pages 735—-742, 2004.

Yu, G. Medioni, and I. Cohen, 2007. Multiple target tracking using spatio-
temporal Markov Chain Monte Carlo data association. In Proc. |IEEE Int. Conf.
on Computer Vision and Pattern Recognition, pages 1-8, 2007.

W.Ge and R.Collins, 2008, "Multi-target Data Association by Tracklets with
Unsupervised Parameter Estimation," British Machine Vision Conference
(BMVC'08), University of Leeds, September 2008, pp. 935-944,




MCDMA

Find a partition of the set of overlapping tracklets such that tracklets belonging
to the same object are grouped together. They could obviously be merged after
that by a postprocessing stage.

estimated tracklet partition




input tracklets hypothesized tracks (at some time)

St el
Y "' .
o 2




MCMEF: MIN-COST MAX-FLOW

Transform the tracking problem into a min-cost max-flow problem
Min-cost max-flow (graph algorithm)
* Input: a weighted graph G with two special nodes

(source s and destination t)

* Objective: find the maximum flow that can be sent from s to t that results in
the minimum cost

* Well-known algorithms exist that work in polynomial time




All edges have capacity 1
Nodeid (t, p, p,): the object moves from location p;
in timestamp t; to location p; in timestamp t

i+1

MAXIMUM FLOW: models the max number of recoverable trajectories
MIN COST: models the best frame-to-frame associations

snapshot




GENERALIZED MINIMUM CLIQUE GRAPHS

ECCV 2012
GMCP-Tracker: Global Multi-object Tracking

Using Generalized Minimum Clique Graphs
Amir Roshan Zamir, Afshin Dehghan, and Mubarak Shah

Not only matching on a temporal sequence

But an optimization which involves all observation in a time window

Fig. 1. Bi-partite vs. GMCP matching. Gray and colored edges represent the input
graph and optimized subgraph, respectively. Bi-partite matches all objects in a limited
temporal window. On the other hand, the proposed method matches one object at a
time across full temporal span, while incorporating the rest of the objects implicitly.




USE OF TRACKLETS

Input Video Detected Humans Tracklets Trajectories

Fig. 3. Finding a tracklet for a small segment of 6 frames. The left column shows the
detections in each frame along with graph G they induce. The middle column shows
the feasible solution with minimal cost along with the tracklet it forms, without adding
hypothetical nodes. The right column shows the feasible solution with minimal cost
with hypothetical nodes added for handling occlusion, along with the tracklet it forms.




THE STATE-OF-ART TRACKING VS GMCP

[1]Benfold, B., Reid, I.: Stable multi-target tracking in real time surveillance video. In: CVPR. (2011)

[7] Yamaguchi, K., Berg, A., Ortiz, L., Berg, T.: who are you with and where are you going? In: CVPR.
(2011)

[8] Leal-Taixe, L., et al.: Everybody needs somebody: Modeling social and grouping behavior on a
linear programming multiple people tracker. (In: ICCV11Workshops)

[9] Pellegrini, S., Ess, A., van Gool, L.: Improving data association by joint modeling of pedestrian
trajectories and groupings. In: ECCV. (2010) [10] Zhang, L., Li, Y., Nevatia, R.: Global data association
for multi-object tracking using network flows. In: CVPR. (2008)

[11] . Brendel, W., Amer, M., Todorovic, S.: Multiobject tracking as maximumweight independent set.
In: CVPR. (2011)

Table 1. Tracking results on Town Center sequence.
| MOTA |MOTP |MODP MODA

Benfold et al [1] | 649 | 804 | 805 | 648
Zhang etal. [10] | 65.7 | 715 | 715 | 66.1
Pellegrinict al.[9] | 634 | 707 | 708 | 64.1
Yamaguchietal. [7] | 633 | 709 | 71.1 | 64.0
lealTaixe et al. [8] | 673 | 715 | 716 | 676
Ours/ GMCP 7559 | 71.93 | 72.01 | 7571 2012
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MEASURING RESULTS
IS HARD




TRACKING MEASURES

The tracking instance is correct if the target is detected and identified and the
location is correct at each frame.

-In Single object tracking (SO-T) “detection” is the same of “identification” in the
correct location.

-In Multiple object tracking (MO-T or MTT) a correct tracking must avoid also
exchanges in the identification, so tracking is good association.

-In Multiple Camera tracking goodness is measured in precision in camera
handoff, for overlapped FoVs, or in term of re-identification for multiple camera
(and multiple targets) with not overlapped FoVs




TRACKING MEASURES

The three basic types of errors in tracking are:
* False positive: tracker identifies a target which is not a target.
* False negative: tracker misses to identify and locate the target.

e Deviation: the track’s location deviated from the ground truth.

n,' :Number of true positives in the frame i, i.e. of correct instances
N, ' :Number of false positives in the frame |,

ne,' :Number of false negatives in the frame i,

And in MO-T:

n, :Number of false associations in the frame i,

in case of SO-T n,"'ng 'ne, '=(0, 1), in case of MO-T they can be more than one (!)




TRACKING MEASURES

Let’s call:

GT! the ground truth in the frame i

T the Detected target in the frame i

. IT'NGTY| . . .
Match degree at pixel level MD=———intersection over union
|TtUGT!|
. . IT'NGTY|

Match at pixel level if level Ti0GTY > Th Th=0,5 PASCAL measure [4]
IT'INGTY|
|IT'UGT?

Without threshold is called the DICE measure




TRACKING MEASURES

The DICE measure can give the accuracy in term of precision and recall at pixel

level

recall =1 precision < 1 precision =1 recall < 1

PASCAL-VOC with a given threshold works at object level
If (PASCAL) then nt'=1;

ny,'=1; ng, '=1 ng, '=1

GT GT




TRACKING MEASURES

Ad object level in a sequence of frames ( for i=1 Nframe):

Nframe ; Tlf ZNframe if

Nyp=2i=1 tp

p
Precision = (n,, )/(ny,, ng,) Recall=(ny, )/(ny, ng,)

Precision*Recall

F-SCOREF = 2 (also called Correct track ratio)

Precision+Recall

At area/pixel level

. |T'INGTY . |T'INGTY|
i — A LR |
=T 29 P = e
) . 1 Nframe - P**Ri
F1-SCORE Kl = Nframezi:1 2 P' R




TRACKING MEASURES

Similar to F-score OTA is accuracy in sequence

Z:Nframe

OTA OTA = 1 — Zizi (M. M)

Nframe ;
=1

OTA (object track accuracy) is generalized in MOTA for MT-tracking

giis the number of ground truth objects in the frame i ( gi=ntp+nfp) thatis 1 in
the frames where the object is present, to normalize OTA

And OTP (precision at pixel level) using DICE

in Mi . .
1 IT' N GTY
OTP = —— . .
IMi| Za |TE U GTY|
i

Mi is the frame where there is a matching

Thus OTP, OTA, and F-scores are similar.




TRACKING MEASURES

For measuring the position deviation instead

Y iem; d(CTi—CGTi)
|Mi|

Deviation=1 d(x,y) distance L2 norm of the centroids

PBM Position Based Matching

1
Nframes

d1(Ti,GTi)
sp_ave(i)

PBM=

2i(1—

sp_ave is the average semi-perimeter between GT and T

) d1(x,y)is the L1 norm

GT
GT / sp_ave=

(HM)+W(T)+H(GT)+W(GT))/2




IN CONCLUSIONS

1. Measures at pixel-level or area-level, when a segmentation is available

2. Measures at object-level where tracking works with bounding box

e Evaluating the capacity of tracking = holding the frames: Fscore, Flscore,
OTA..

* Evaluate both accuracy and precision: FS-CORE varying the thershold, so if
the th is lower it measures the accuracy when a lower precision is accepted

e Evaluating the capacity in position location: Deviation or BPM




CORRELATION BETWEEN MEASURES

Measures are similar ; do not waste your time if measures are correlated

- We use F-SCORE and Deviation only since [1]

Experiment with 19 tracker over 315 videos (5985 trials)

F-score and OTA as a correlation of 0,99
F-score and Fl1-score are correlated working at bb correlation of 0.91
F-score and Deviation no correlation 0.13

F-score and PBM more correlated about 0,79 (it could be useful to)

F—Score vs. Deviation: correlation = -0.13

!

F-Score

0 0.2 0.4 0.6
Deviation




MEASURES

Name Equation Target Measure
‘ F-score [34] . If;‘;;’i‘;"’y:‘_"":{‘ﬁ Accuracy  Thresholded precision and recall
1 p' -7t .
F'1-score [22] —_— 2 - Accuracy  Precision and recall
N frames ,'F"f' + rt
Ei[n}n—rlip,’] . .
OT A [31] 1— SR Sy Accuracy  False positive and false negative
i ar
OTP [30] ﬁ Y e M- %%—: Accuracy  Average overlap over matched frames
; 1 T NeT! . ) q
AT A [22] i r— >, OO Accuracy  Average overlap
o e, AT QT : : - ,
‘ Deviation [38] 1 — EL&M#I-'UcI Location  Centroid normalized distance
Distance(1 . : .
PEBM [22] N L Z [] — —{] Location  Centroid L1-distance
N frames Th{?:l

L

See Smeulder et al. TPAMI 2013




MULTI TARGET TRACKING

With MTT normally tracking by detection is used thus

Multiple object detection precision (MODP) is the 2D precision of the detection
level

Multiple object detection accuracy(MODA) is the detection accuracy counting
false positives and negatives

Multiple object tracking precision (MOTP) is the 2D location precision of the
target asociation level

Multiple object tracking accuracy (MOTA) is the tracking accuracy counting false
positives, negatives and identity switches too




WITH MULTIPLE TARGETS

MOTA Multiple object tracking accuracy:

ZN frame

MOTA = 1 — 2i=1 (s 4 Nl Nige)

N .
S g

MOTP Multiple object tracking precision

d(CTi-CGTY)

MOTP =1-2iemi 4T
IMil

Here Mi are the number of associated tracks




MOT CHALLENGE MEASURE AND BENCHMARK

MOTChallenge 2015:

Towards a Benchmark for Multi-Target Tracking
Th e State Of t h e a rt : Laura Leal-Taixé*, Anton Milan*, lan Reid, Stefan Roth, and Konrad Schindler

Small dataset, World-wide known

- 22 sequences, half for training and half for testing, with a total of 11286
frames or 996 seconds of video.

- Camera calibration is provided for 4 to 3D real-world coordinate tracking.

- precomputed object detections, annotations, and a common evaluation
method for all datasets

(only few from static cameras) motchallenge.net

Multiple Object Tracking Benchmark

fAhome (@datav Eresults Hyvis Asubmit~ @FAQ L people *)login . signup

Welcome to the Multiple Object Tracking Benchmark!




PERFORMANCE ANALYSIS

Only N.9 has a public detector!

Tracker Avg Rank $MOTA MOTP FAF MT ML FP FN ID Sw. Frag Hz  Detector
NOMTwSDP 7.0 55.5 +11.2 766 1.0 39.0% 25.8% 5594 21,322 427 (6.5) 701 (10.7) 6.4 Private
1 W. Choi. Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor. In ICCV, 2015.
AMPL 13.5 51.9 +11.9 750 12 264% 24.8% 6,963 22,225 372 (5.8) 1,130 (17.7) 2.8 Private
2.10 Anonymous submission
LKDAT_CNN 16.6 49.3 +11.8 745 1.0 20.8% 284% 6,009 24,550 563 (9.4) 1,155 (19.2) 1.2 Private
3.0 Yuan Zhang, Di Xie and Shiliang Pu (Hikvision Research Institute)
TSML_CDE 13.6 49.1 £+13.0 743 09 304% 26.4% 5,204 25,460 637 (10.9) 1,034 (17.7) 6.5 Private
4 B. Wang, G. Wang, K. L. Chan, L. Wang. Tracklet Association by Online Target-Specific Metric Learning and Coherent E&?\?mﬁs‘ %%tgggtla&ly
justry 27.9 452 +17.0 747 24 40.6% 16.0% 14,117 18,769 764 (11.0) 1,413 (20.3) 2.6 Private
510 Anonymous submission
DMT 23.0 445 +11.8 729 14 347% 22.1% 8,088 25335 684 (11.6) 1,253 (21.3) 1.2 Private
6. Anonymous submission
YTBD 13.8 44.0 £10.9 739 1.1 194% 28.7% 6,149 27,649 598 (10.9) 1,223 (22.2) 1,156.6 Private
’. Anonymous submission
PHD _PF 28.2 42.9 £10.3 723 16 18.0% 23.4% 9,436 24,816 809 (13.6) 1,327 (22.3) 1.0 Private
8.0 R. Sanchez, F. Poiesi, A. Cavallaro. Under review.
DTA 28.0 41.9 £+12.5 723 16 31.9% 22.6% 9,450 25,372 856 (14.6) 1,401 (23.9) 1.2 Public
.

Anonymous submission



PART I: by FRANCESCO SOLERA

Multi-Target Tracking Evaluation

AVSS 2015 Best Paper Award

Towards the evaluation of reproducible robustness in tracking-by-detection

Francesco Solera Simone Calderara  Rita Cucchiara
Department of Engineering Enzo Ferrari
University of Modena and Reggio Emilia

name.surname@unimore.it

Abstract
Association and

Conventional experiments on MTT are built upon the be- Object Representation optimization
lief that fixing the detections to different trackers is suffi- detections (features) |-
cient to obtain a fair comparison. In this work we argue Object

] 9 - Ty N ’ eyl e — |
how the true !.Jehavmf‘ of a rrackfzr is exposed when 31.51," model Model update
uated by varying the input detections rather than by fixing

them. We propose a systematic and reproducible protocol
and a MATLAB toolbox for generating synthetic data start-
ing from ground truth detections, a proper set of metrics to
understand and compare trackers peculiarities and respec-
tive visualization solutions.

PERFORMANCES Tracking-by-detection
EVALUATION - - — — .

Figure 1: Tracking-by-detection overview scheme. Track-
ing evaluation cannot be decoupled from detections.




TRACKING BY DETECTION

| Association and Typlcal plpellne'
Obje.ct : Representation optimization | .
detections i (features) | | 1 ) Pe 0 p | e d ete Ct ion
Object ‘
model JIT| Modelwpe | 2. Feature extraction from BB

PERFORMANCES | mekngby-deccion 3, Detection-to-ldentity (data) association
EVALUATION ~

Everything comes after “people detection”!

Better (worst) detections means better (worst) tracking!

If you score higher than another tracker, who deserves the merit:
* Higher quality detections or
e Better tracking ability?




TRACKING BY DETECTION

| Association and Typlcal plpellne'
Obje.ct : Representation optimization | .
detections i (features) | | 1 ) Pe 0 p | e d ete Ct ion
Object ‘
model JIT| Modelwpe | 2. Feature extraction from BB

PERFORMANCES | mekngby-deccion 3, Detection-to-ldentity (data) association
EVALUATION ~

Everything comes after “people detection”!

Better (worst) detections means better (worst) tracking!

If you score higher than another tracker, who deserves the merit:
* Higher quality detections or
e Better tracking ability?




FIXING THE DETECTIONS IS OK... BUT

Multiple ObJect Tracking-Benchmark

fthome (@datar Bresulis- Hvis Asubmit~ @FAQ AL people

2D MOT 2015 Results

Click on a measure fo sort the table accordingly. See below for a more detailed description.

Tracker Avg Rank N\A  MOTP  FAF mT ML FP. FN ID Sw. Frag Hz Detector

NOMTwSDP 7.0 2 76.6 1.0 39.0% 25.8% 5,594 21,322 427 5.5 701 o7y 6.4 Private
1. W. Choi. Near-Online Multarget Tracking with Agg Local Flow Descriptor. [l ICCV, 2015.
AMPL 135 519 2112 750 1.2 26 4% 24 8% 6,963 22 225 372 5.8 1,130 p1i7.7y 28 Private
2.0 Anonymils submissian
LKDAT CNN 16.5 493 1118 745 1.0  208% 284% 6,009 24 550 563 @4 1,155 (10.2) 1.2 Private
3.0 ‘Yuan Zhang, Di Xie and Shiiang Pu [Hikvision Relrch Instiute)

TSML_CDE 136 491 =30 743 09 304% 264% 5204 25460 637 0oy 1,034 77y 6.5 Private
4

B. Wang. G. Wang. K. L. Chan, L. Wang. Tracklet Association by Online Target-Specific Metric Leaming and Coherent Dynamics Estimation. In arXiv:151 8654, 2015.
justry 279 452 70 747 24 406% 160% 14117 18,769 764 (11.0) 1413 203, 26 Private

5[0

.1'19’1)"’11 S submisson

DMT 231 445 s11s 729 14 347% 221% 8088 25335 684 115 125313 12 Private
6

Anonymils submission

YTBD 138 440 =00 739 11 194% 287% 6149 27649 598 100y 1223222,  1,156.6 Private
7

A'\D'\Y'ﬂ S sSubmiIssIon
PHD_PF 282 429 =03 723 16 180% 234% 9436 24816 809 128y 1,327 223 1.0 Private
8.0

Public

S submisson



FIXING THE DETECTIONS IS OK... BUT NOT ENOUGH!

Multiple Object TrackingBenchmark

fAhome (Odatar Bresuts- Hvis submit~ @FAQ L people *Jlogin . signup

2D MOT 2015 Results

Click on a measure fo sort the table accordingly. See below for a more detailed description.

Tracker Avg Rank N\A MOTP FAF Mt ML FP FN ID Sw. Frag Hz Detector
NOMTwSDP 7.0 2 76.6 1.0 39.0% 25.8% 5,594 21,322 427 i5.5) 701 o7y 6.4 Private
1. W. Choi. MearOnline Multi-target Tracking with Aggregated Local Flow Descriptor. |8 IGCV, 2015.
AMPL 135 519 s1e 750 12 264% 248% 6963 22225 372 s5) 1,130 (177 28 Private
2.0 . __
= nonymiills submission

SOOI Pcople don't want to stop improving 12 | e

3. (P g Pu (Hikvision Rediiarch Institute)

iR |\ OTA scores... and they are right! o5 | raae

4' ation. In arXiv:151 9554, 2015.
justry 279 451 26 Private
5.0 o . . Anonym{ils submission
o . N Old detections yields results which do not . e
5 represent the current state of the field!
YTBD 138 44 -8 - L =2 L Y A= =ERCa: 1,156.6 Private
T Anonymils submission
PHD_PF 282 429 03 723 16 180%  234% 9436 24816 809 (12.5) 1,327 223 1.0 Private

R. Sanchez, F. Poiesi, A. Cavallarofl Inder review.

16  31.9% 22.6% 9,450 25,372 856 (14.8) 1,401 j22.9 . Public

s submission




IF WE CANNOT FIX DETECTIONS...

... but in a controlled way!




IF WE CANNOT FIX DETECTIONS...

SOLUTION 2: CHANGE THE DETECTIONS

... but in a controlled way!

Detector performances are usually scored by precision P and recall R measures.

For all combinations of (P,R) in [0,1]x[0,1]:
e Starting from GT detections
 Add detections (FP), remove detections (FN)

* Move detections and change size (localization errors, yield FP+FN)

 Evaluate tracker WE REMOVE THE
DETECTOR BIAS

BY SIMULATING — IN A CONSISTENT WAY - ALL
POSSIBLE DETECTORS




PROTOCOL

* ADD FP:

» add close to GT location

* New location sampled
from a gaussian
distribution

(E, g) NN((:B, y)aal)

GT




PROTOCOL

* ADD FP:

» add close to GT location

* New location sampled
from a gaussian
distribution

(Ea g) ~ N((:l?, y)a 01)

GT




PROTOCOL

+ ALTER FP: * ADD FP:
« Modify the BB size * add close to GT location
» Scale factor [0.5,1.5] with uniform - New location sampled
probability from a gaussian
N ((w, ), o5) distribution

(fl—:, g) NN((:B7 y),al)

GT




PROTOCOL

+ ALTER FP: * ADD FP:
« Modify the BB size * add close to GT location
» Scale factor [0.5,1.5] with uniform - New location sampled
probability from a gaussian
N ((w, ), o5) distribution

(E, g) NN((:B, y)aal)

GT




PROTOCOL

+ ALTER FP: * ADD FP:
« Modify the BB size * add close to GT location
» Scale factor [0.5,1.5] with uniform - New location sampled
probability from a gaussian
N ((w, ), o5) distribution

(Eag) ~ N((:U, y)aol)

!

 REMOVE TP:

« Randomly wit
uniform rc%vggbility

 Create FN

A

GT




PROTOCOL

+ ALTER FP: * ADD FP:
« Modify the BB size * add close to GT location
» Scale factor [0.5,1.5] with uniform - New location sampled
probability from a gaussian
N ((w, ), o5) distribution

(Eag) ~ N(((E, y)’al)

 REMOVE TP:

« Randomly wit
uniform rc%a%ility

 Create FN

GT




PROTOCOL

+ ALTER FP: * ADD FP:
« Modify the BB size * add close to GT location
» Scale factor [0.5,1.5] with uniform - New location sampled
probability from a gaussian

distribution

N((w,h), o)

(Eag) ~ N(((E, y)’al)

 REMOVE TP:

* Randomly with
uniform probability

 Create FN

GT

» RESIZE TP:

« Sample new size from
a Gaussian




PROTOCOL

+ ALTER FP: * ADD FP:
« Modify the BB size * add close to GT location
» Scale factor [0.5,1.5] with uniform - New location sampled
probability from a gaussian

distribution

N((w,h), o)

(Eag) ~ N(((E, y)’al)

 REMOVE TP:

* Randomly with
uniform probability

 Create FN

GT

» RESIZE TP:

« Sample new size from
a Gaussian




PROTOCOL (CONTINUED)

To account for randomness:
« compute 5 instances for each (PR) pair and
* report mean and variance

() PandR=1 (b)Pand R=0.8 (c)PandR=0.6 (dPand R=04 (e) MOT Challenge




SCENE COMPLEXITIES

Tracker must deal efficiently with occlusion

Occlusions:
 depend on the scene (world occlusion) or
e onother targets

* but do not depend on the detector!

Generate occlusion from GT data under 2 parameters:

1. The percentage of occluded targets N
2. The percentage of occlusion w.r.t. the trajectory lenght L




VISUALIZATION TOOLS

Pradsion

1 T T
: : : : P: 0.50, R: 0.50
1 0.9 ff--e- s R RS EEE R - P: 0.60, R: 0.60
: : : : : P: 0.70, R: 0.70
08 - et P: 0.80, R: 0.80
0.9 P: 0.20, R: 0.90
o i S T s P: 1.00, R: 1.00
— DET (0.80, 0.56)
# e e e e oo
0.8 E 0.6
on
E O5 b - oG- e
o
0.7 2
. S 0.4 PN e b e
=
0_3 .......................................................
06
0.3 b A N - T e e — N
0-5 0_" .....................................................
0 i i i i i i i i
0 5 10 15 20 25 30 35 40 45
Recall Nurmber of GT tracks

MOTA matrix : MOTA values varying the 2 dataset parameters

TL Plots: different curve on matrix diagonal

* TLis defined as the % of the trajectory correctly tracked w.r.t. its lenght




A CASE STUDY PETS S2L.2

2 trackers trk1 and trk2 10 years one from another
Well known sequence PETS S2L2
Which one is the best?




NEW TRENDS IN MTT




IMPROVING «OLD» APPROACHES

MHT

multiple hypothesis tracker (MHT) [Reid IEEE TAC79]
+ apperance models [JRehg et al ICCV15].

JPDA

joint probabilistic data association (JPDA) [Fortmann et al IEEE CDC80]
+ Optimization [Milan et al ICCV2015]

NN

K shortest path optimization [Fua et al I[EEE TPAMI11]

Appearance constraints [Fua et al ICCV11]




DEEP LEARNING FOR TRACKING?

CNN difficulties for
number parameters and thus data

constrained number of output

RNN loop is better
inserting concept of memory

mapping input in arbitrary ouput sequence as long as the sequence alignment
and the input and output dimensions are known in advance.

Online Multi-target Tracking using
Recurrent Neural Networks

Anton Milan® Seyed Hamid Rezatofighi® Anthony Dick!
C 20 6 Konrad Schindler? Tan Reid!
1School of Computer Science, The University of Adelaide, Australia
2Photogrammetry and Remote Sensing Group, ETH Ziirich




HOW IT IS WORK..

RNNs work in a sequential manner, where a prediction is made at each time
step, given the previous state and possibly an additional input.

The core of an RNN is its hidden state h e Rn of size n that acts as the main
control mechanism for predicting the output, one step at a time. In general,

RNNs may have multiple layers | = 1; :::;L.
We will denote hlt as the hidden state at time t on layer .

hO can be thought of as the input layer, holding the input vector, while hL the
final representation to produce the output yt

Online Multi-target Tracking using
Recurrent Neural Networks

Anton Milan! Seyed Hamid Rezatofighi® Anthony Dick®
Konrad Schindler? Tan Reid!

1School of Computer Science, The University of Adelaide, Australia
2Photogrammetry and Remote Sensing Group, ETH Ziirich




PUTTING TOGETHER

Markov assumption+ Bayesian filtering

p(i?t|271:t) OCP(ZH#I&) /p(If|It1)p(It1|21:f1)di’7t1~

* Data ( observations —models) association is not straigthforward if candidates
, observations and states are multiple

 Time varying number of targets

*  spam new targets enterinng
*  Remove exit targets which disappeares indefinetily

* Problems:
. new target or false alarms?
. Exiting targets or miss detection?
Online Multi-target Tracking using
- Recurrent Neural Networks
v, € RV-P t t
* D?4, x,y,h,w 't

!School of Computer Science, The University of Adelaide, Australia

] .
- R;‘I . D 2Photogrammetry and Remote Sensing Group, ETH Ziirich
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N




A matrix of assignment probability

The assignment probability matrix A € [0, 1]V *M+1D yepresents for each
target (row) the distribution of assigning individual measurements to that target,
i.e. A;j; = p(i assigned to j) and Vi : ) ;Aij = 1. Note that an extra column
in A is needed to incorporate the case that a measurement is missing. Finally,

_ T W . . . a1
£ €[0,1]"V is an indicator vector that represents the existence probability of a
target and is necessary to deal with an unknown and time-varying number of
targets. We will use (~) to explicitly denote the ground truth variables.

Online Multi-target Tracking using
Recurrent Neural Networks

Anton Milan! Seyed Hamid Rezatofighi® Anthony Dick!
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!School of Computer Science, The University of Adelaide, Australia
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RNN hidden state

_ Data association
Stz}l‘te, obs?ervanon/'
he x4 Zt41 A1 & Cit1 hi Ci
| | |
4 ) 4 W N
1@" Data !»
| association -
/Predictiow /Update /E_iirth,-’ h
= @ \ \ Death E
E N 7] ‘concat . wn
i
=W
> W L{si Y
Wi WHeg -(=)(absk,
\\- AN AN \_
Y Y Y / Y i i Y
xﬂu hi+1 iUtLH Et i1 Eivq Aiﬂ hit1 Cit1

learnable @@ gI:en:aet?ct) wise @ dz\t product sigmoid softmax

paramgters ns

Fig. 2. Left: An RNN-based architecture for sthte prediction, state update, and target
existence J 'proba.bility J'estimation. Right: An LSTM-based model for data association.
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LOSS

Predicted values and GT values

\ /7,

L(z* 2, 1.E)=— o =T+ il r—I||°4+ vle+EE*,
(" EFE) = 55 I~ FE + gl - vLe + <8

prediction update

birth/death + reg.

The loss take into account all the errors averaged over all targets on all frames

Intuitively, we aim to learn a network that predicts trajectories that are close to
the ground truth tracks.

—>we minimise the mean squared error (MSE) between state predictions and
state update and the ground truth.
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LONG SHORT-TERM MEMORY FOR DA

LSTM-based architecture that is able to learn to solve this task entirely from
training data. We believe that the LSTM's non-linear transformations and its
strong memory component, can solve the discrete combinatorial problem of
association and is able to replicate the linear assignment problem

update
s
4
-Gm)
Tt
(,m
st @ > oco
prediction
>
[ Il time
t t+1

Loss. To measure the misassignment cost, we employ the widely used negative
log-likelihood loss '
LA, a) = —log(Aia), (9)

where @ is the correct assignment and A;; is the target i to measurement j

Online Multi-target Tracking using
Recurrent Neural Networks
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IMPLEMENTATION

1) Data augmentation

* by randomly perturbing real data;

. by sampling from a simple generative trajectory model learned from
real data;

* 3) by generating physically motivated 3D-world projections.

2) RNN 1 layer with 300 hidden units
LSTM 2 layers with 500 hidden units

Training 30 H CPU
Simulated data

22 video of MOT Challenge




COMPARISON WITH ONLINE METHODS

Table 1. Tracking results on the MOTChallenge training dataset. *Denotes offline
post-processing.

Method Rell  Pren MT ML FP FN IDs FM|MOTA MOTP
Kalman-HA |28.5  79.0] 32 334 3,031 28,520 685 &37| 19.2  69.9
Kalman-HA2*|28.3  83.4) 39 354| 2,245 28,626 105 342] 224 694
JPDA,,* 30.6  81.7] 38 348 2,728 27,707 109 380, 23.5 69.0
RNN_HA 37.8 75.2) 50 267 4,984 24,832 518 963 24.0 68.7
RNN_LSTM |37.1 73.5] 50 260| 5,327 25,094 572 983 22.3  69.0

Table 2. Tracking results on the MOTChallenge test dataset. *Denotes an offline (or
delayed) method.

Method MOTA MOTP FAR[MT% ML%| FP  FN IDs Frag.| FPS
MDP [48] 30.3% 71.3% 1.7] 13.0 38.4] 9717 32,422 630 1,500 1.1
JPDA* [13] | 23.8% 68.2% 1.1| 5.0 58.1| 6,373 40,084 365 869 32.6
TC_ODAL [49]| 15.1% 70.5% 2.2| 3.2 55.8/12,970 38,538 637 1,716] 1.7
RNN_LSTM | 19.0% 71.0% 2.0] 5.5 45.6/11,578 36,706 1,400 2,081|165.2




Fig. 7. Our RNN tracking results on selected MOT'Challenge sequences including ADL-
Rundle-3 (first row), TUD-Crossing (second row) and PETS S2.1.2 (bottom).




PART II: FRANCESCO SOLERA

Our approach to MTT

ICCV 2015

Learning to Divide and Conquer for Online Multi-Target Tracking

Francesco Solera Simone Calderara Rita Cucchiara

Department of Engineering
University of Modena and Reggio Emilia

name.surname@unimore.it

Abstract

Online Multiple Target Tracking (MTT) is often addressed
within the tracking-by-detection paradigm. Detections are
previously extracted independently in each frame and then
objects trajectories are built by maximizing specifically de-
signed coherence functions. Nevertheless, ambiguities arise
in presence of occlusions or detection errors. In this paper
we claim that the ambiguities in tracking could be solved by
a selective use of the features, by working with more reliable
features if possible and exploiting a deeper representation of
the target only if necessary. To this end, we propose an online
divide and conquer tracker for static camera scenes, which
partitions the assignment problem in local subproblems and
solves them bv selectivelv choosing and combinine the best

Figure 1: The scene is partitioned in local zones. Green zones is
where the same number of tracks and detections are present. Red
zones, where miss and false detections (white dashed contours)
are discovered and solving the associations may call for complex
appearance or motion features.




DRIVING QUESTION: HOW DO WE HUMANS TRACK?

Every time we blink, change focus or simply drive in a car, we have to
complete a multi target tracking process. How do we do it?
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LOOK UP INTHE SKY!




DRIVING QUESTION: HOW DO WE HUMANS TRACK?

Every time we blink, change focus or simply drive in a car, we have to
complete a multi target tracking process. How do we do it?

EVOLUTION RULE OF THUMBS: SIMPLE IS BETTER

Our evolution has thought us to prefer spatial information over surface
features (patterns, colors, ...) or motion

It is faster, it is less prone to errors in “feature extraction” step and more
reliable

Position is always meaningful, while other features benefit changes from
scene to scene

You can always refer to more complex features in case of need




OUR IDEA

Human Visual Tracking

. From neuroscience : the ways of where and what

*  From perceptual psychology : the object file theory
(Kahnemann, Treisman, Gibbs 1995)

*  Whenever possible we prefer distance only

. Motion prediction and appearance is a plus when useful and safe

Tracking at frame 473

Thus? Learning to Divide and
Conquerin MTT

1. Split the crowd in influence zones (latent

'
N
T

knowledge) %
2. Decide whether those zones are 2

ambiguous (glso latent) - | | AT
3. Solve unambiguous associations with »w

distance only

4. Employ different level features in
ambiguous cases ( ask for shapes, color.. Al
edges.. motion)




WHAT DOES IT MEAN TO DIVIDE THE
TRACKING?

At each frame-by-frame association,
split detections and tracks in locally compact clusters.

The key idea is that some of these will be really easy to solve!
So easy to solve that spatial information will be enough.

o o o
Q + Q * Q *
+ + +
Q+ o g Q+ O & §+ o &
TARGETS and CLUSTERING STEP FIND EASY TO SOLVE

DETECTIONS (+) ASSOCIATIONS




WHAT DOES IT MEAN TO CONQUER
THE TRACKING?

We define a zone simple if it contains an equal number of targets and detections.
Associations in simple clusters are solved by using spatial information only.
y o
"
o) ASSOCIATE ON

* n "‘&? DISTANCE FEATURES
Q+ P ONLY

More complex (but also more unstable) features, e.g. appearance or motion, are
invoked when ambiguity and uncertainty arise in the unassociated zones.

Q (<@=}
* 8 ASSOCIATE ON
N ’“g DISTANCE AND MORE
R+ © COMPLEX FEATURES

+




WHAT DO WE LEARN?

The clustering is cast as latent structured variable, while the association is the output to
be predicted. Our method, simultaneously learns in a Latent Structural SVM framework:

INFERENCE

DETECTIONS

L J

LEARNING

TRAJECTORIES

> DIIVIDE : CUNQI:IER Model update
Correlation Clustering Hungarian
r'y I
Spatial information Motion, appearance, ...

F 3 r 3

LATENT STRUCTURAL SVM
learn affinity measure and features combinations

the CLUSTERING AFFINITY MEASURE,
needed to split the targets and
detections in smaller local
association sub-problems;

the ASSOCIATION COST FUNCTIONS of
simple and complex clusters by
finding the best weighted
combination of simple and
complex features respectively.




WHAT IS GOOD ABOUT THIS METHOD?

1. Complex features such as appearance or motion may cause the tracker to
drift. Our method use them only when strictly necessary. In many cases,
spatial information turns out to be sufficient.

2. Simple associations are solved independently, so the matching in this local
sub-problems can be computed in parallel.

3. We don’t fix the clustering scheme, but learn the affinity measure from
examples, since locality may be scene dependent.

4. We also learn to combine the features at best to complete the data
association step, as different sequences may provide different challenges.

5. Our method is an extensible framework — any number of complex features
can be added!

6. Overall, the method is online and fast. This is thanks to both the smaller sub-
problems and the reduced number of calls to complex features extraction.




WHAT IS BAD ABOUT THIS METHOD?

* Only sees one new frame at a time (less robust than flow/cliqgue methods)
* Need to re-train for different scenarios

* No moving cameras (is this bad?)




WHAT IS BAD ABOUT THIS METHOD?

* Only sees one new frame at a time (less robust than flow/cliqgue methods)
* Need to re-train for different scenarios

* No moving cameras (is this bad?)

LDCT (our) RNN_LSTM
Sequence MOTA MOTP FAF GT MT Sequence MOTA MOTP FAF GT MT
TUD-Crossing 677 829 0.5 13 69.2 % TUD-Crossing 57.2 "y 0.4 13 30.8 %
PETS09-S2L.2 47 4 70.8 23 42 14.3 % PETS09-S21.2 383 716 23 42 95 %
AVG-TownCentre 3.7 722 4.2 226 15.9 % AVG-TownCentre 13.4 68.8 27 226 35%
ADL-Rundle-3 252 734 0.7 44 45 % ADL-Rundle-3 237 720 215 44 6.8 %
KITTI-16 530 79.0 0.4 17 1.8 % KITTI-16 26.3 68.5 14 17 0.0 %
Venice-1 335 68 4 13 17 0.0 % Venice-1 12.7 7T 15 17 0.0 %

MOTChallenge static camera test sequences...




PART IIl: Francesco SOLERA

Multi Camera Tracking

with some help from social groups
Trans. On CSVT 2016, collaboration with Duke University

Tracking Social Groups Within and Across Cameras

Francesco Solera, Simone Calderara, Ergys Ristani, Carlo Tomasi, Rita Cucchiara

Abstract—Groups are considered by modern sociological
crowd theories the atomic entities where social processes arise
and develop. In computer vision, group analysis has gained
momentum only recently due to the complexities of the group
detection task in real life scenarios. In this context, the conven-
tional people tracking problem can be re-instantiated considering
groups playing a central role in the process. Thus, we propose
a method for solving the group tracking problem seamlessly on
single and multiple disjoint cameras. Our formulation follows
the tracking by detection paradigm where groups are the atomic
entities and are linked along time forming long and consistent tra-
jectories. To this aim, we formulate the problem as a supervised
clustering problem where a Structural SVM classifier is used oz >
to learn a proper similarity measure among such group entities. ; b = 5% fuma S

_\'lultl:Camera group tracking is handle.d inside t_l'le frmne\\'m"l.( by Fig. 1: An example of groups detected in the four different
adopting an orthogonal feature encoding allowing the classifier

to learn differently inter and intra cameras features weights. CaMmeras of the proposed data set DukeChapel-Groups.
Experiments were carried out on a novel annotated data set of




HOW DO WE GO FROM SINGLE TO MULTI-CAMERA?

* Same way we go:

1. from detections to tracklets and
2. from tracklets to trajectories

cam3

(a) Group clustering at T}

We want to cluster together trajectories belonging to the same person.




HOW DO WE GO FROM SINGLE TO MULTI-CAMERA?

Different camera placements:

1. which features are best to track in a specific
camera?

which features are best to associate between two
specific cameras?

FEATURE IMPORTANCE IS STRONGLY INFLUENCED BY
CAMERA SETTING




HOW DO WE GO FROM SINGLE TO MULTI-CAMERA?

Above all:
people placement inside social groups change from camera to camera

Different camera placements:

1. which features are best to track in a specific
camera?

2. which features are best to associate between two
specific cameras?

FEATURE IMPORTANCE IS STRONGLY INFLUENCED
BY CAMERA SETTING




CAN WE EXPLOIT IT INSTEAD OF SUFFERING FROM IT?

If we can recognize the group to which a pedestrian belongs to:
* we can stop tracking singletons and

» start tracking groups! (at least, until they split)




CAN WE EXPLOIT IT INSTEAD OF SUFFERING FROM IT?

If we can recognize the group to which a pedestrian belongs to:
* we can stop tracking singletons and

» start tracking groups! (at least, until they split)

PEOPLE DETECTOR » GROUP DETECTOR

PAMI 2015

some of this detections will be pedestrians
others will be groups

weights on edges are learnt based on cameras

involved in association:
similar viewpoint -> appearance important
different viewpoint -> motion/time reasoning is better




SOME EXAMPLES...

PEOPLE TRACKING GROUP TRACKING

cam: 5, frame: 19000 cam: 1, frame: 19000




FINAL CONCLUSIONS

1) Thereis no conclusion to tracking problem (at least for NOW)
- itis hard

- it comprises different sub-problems

2) Many approaches for MTT
GNN, JPDA, MHT, DL

a large area of converging research

3) People detection and re-identification is always trendy

4) Many domain specific contexts that are interesting (look at the egocentric
ones, automotive...)

5) AVERY VERY HOT RESEARCH AREA
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